Message ID | 20250902153929.3365588-2-rob.woolley@windriver.com |
---|---|
State | Accepted, archived |
Commit | 0a849dc7edeecb6c16a8a0fe347015d6d85e9dfd |
Headers | show |
Series | vte: upgrade 0.78.2 -> 0.80.3 | expand |
This has already merged to master. Alex On Tue, 2 Sept 2025 at 17:39, Rob Woolley via lists.openembedded.org <rob.woolley=windriver.com@lists.openembedded.org> wrote: > > From: Gyorgy Sarvari <skandigraun@gmail.com> > > 0004-fast_float-Add-single-header-library-for-from_char-i.patch > and 0005-color-parser-Use-fast_float-implementation-for-from_.patch > patches dropped: upstream has adopted the changes, and oe-core also > provides now fastfloat, no need to vendor it with a patch. > > 0002-lib-Typo-fix.patch is dropped, because it was a backport, and > it is included in this release. > > Shortlog: https://gitlab.gnome.org/GNOME/vte/-/compare/0.80.3...0.78.2 > > Signed-off-by: Gyorgy Sarvari <skandigraun@gmail.com> > Signed-off-by: Mathieu Dubois-Briand <mathieu.dubois-briand@bootlin.com> > Signed-off-by: Richard Purdie <richard.purdie@linuxfoundation.org> > --- > .../vte/vte/0002-lib-Typo-fix.patch | 25 - > ...ingle-header-library-for-from_char-i.patch | 3922 ----------------- > ...-fast_float-implementation-for-from_.patch | 102 - > .../vte/{vte_0.78.2.bb => vte_0.80.3.bb} | 14 +- > 4 files changed, 6 insertions(+), 4057 deletions(-) > delete mode 100644 meta/recipes-support/vte/vte/0002-lib-Typo-fix.patch > delete mode 100644 meta/recipes-support/vte/vte/0004-fast_float-Add-single-header-library-for-from_char-i.patch > delete mode 100644 meta/recipes-support/vte/vte/0005-color-parser-Use-fast_float-implementation-for-from_.patch > rename meta/recipes-support/vte/{vte_0.78.2.bb => vte_0.80.3.bb} (82%) > > diff --git a/meta/recipes-support/vte/vte/0002-lib-Typo-fix.patch b/meta/recipes-support/vte/vte/0002-lib-Typo-fix.patch > deleted file mode 100644 > index 410d506806..0000000000 > --- a/meta/recipes-support/vte/vte/0002-lib-Typo-fix.patch > +++ /dev/null > @@ -1,25 +0,0 @@ > -From 6b7440996819c12ec32bfaf4e73b27baeb273207 Mon Sep 17 00:00:00 2001 > -From: Christian Persch <chpe@src.gnome.org> > -Date: Thu, 5 Sep 2024 23:59:05 +0200 > -Subject: [PATCH 2/3] lib: Typo fix > - > -Fixes: https://gitlab.gnome.org/GNOME/vte/-/issues/2816 > -Upstream-Status: Backport [https://gitlab.gnome.org/GNOME/vte/-/commit/e24087d953d9352c8bc46074e2662c80f9bfbc2d] > -Signed-off-by: Khem Raj <raj.khem@gmail.com> > ---- > - src/vteinternal.hh | 2 +- > - 1 file changed, 1 insertion(+), 1 deletion(-) > - > -diff --git a/src/vteinternal.hh b/src/vteinternal.hh > -index 051e78c..b1adc19 100644 > ---- a/src/vteinternal.hh > -+++ b/src/vteinternal.hh > -@@ -1233,7 +1233,7 @@ public: > - void reset_decoder(); > - > - void feed(std::string_view const& data, > -- bool start_processsing_ = true); > -+ bool start_processing_ = true); > - void feed_child(char const* data, > - size_t length) { assert(data); feed_child({data, length}); } > - void feed_child(std::string_view const& str); > diff --git a/meta/recipes-support/vte/vte/0004-fast_float-Add-single-header-library-for-from_char-i.patch b/meta/recipes-support/vte/vte/0004-fast_float-Add-single-header-library-for-from_char-i.patch > deleted file mode 100644 > index 731dba729d..0000000000 > --- a/meta/recipes-support/vte/vte/0004-fast_float-Add-single-header-library-for-from_char-i.patch > +++ /dev/null > @@ -1,3922 +0,0 @@ > -From 2a32e43e43b04771a3357d3d4ccbafa7714e0114 Mon Sep 17 00:00:00 2001 > -From: Khem Raj <raj.khem@gmail.com> > -Date: Fri, 4 Oct 2024 21:21:11 -0700 > -Subject: [PATCH 4/5] fast_float: Add single header library for from_char > - implementation > - > -Document the process to re-generate the file whenever new release > -is made for fast_float upstream. > - > -This would make it work with llvm libc++ > - > -Upstream-Status: Submitted [https://gitlab.gnome.org/GNOME/vte/-/issues/2823#note_2239888] > -Signed-off-by: Khem Raj <raj.khem@gmail.com> > ---- > - README.md | 17 + > - src/fast_float.hh | 3869 +++++++++++++++++++++++++++++++++++++++++++++ > - 2 files changed, 3886 insertions(+) > - create mode 100644 src/fast_float.hh > - > -diff --git a/README.md b/README.md > -index a32465a9..20ed5ba2 100644 > ---- a/README.md > -+++ b/README.md > -@@ -21,6 +21,23 @@ on download.gnome.org, but please note that any tarball for releases > - after 0.60.3 were made by either the gnome release team or other > - gnome contributors, but not by a VTE maintainer. > - > -+fast_float library[1] is used to provide from_chars implementation for faster > -+and more portable parsing of 64 decimal strings. > -+ > -+fast_float.hh is an amalgamation of the entire library, > -+which can be regenerated by using amalgamate.py script provided by > -+fast_float repository. Following command can be used to re-generate the > -+header file > -+ > -+``` > -+git clone https://github.com/fastfloat/fast_float > -+cd fast_float > -+git checkout v6.1.6 > -+python3 ./script/amalgamate.py --license=MIT > $VTE_SRC/src/fast_float.hh > -+``` > -+ > -+[1]: https://github.com/fastfloat/fast_float > -+ > - Installation > - ------------ > - > -diff --git a/src/fast_float.hh b/src/fast_float.hh > -new file mode 100644 > -index 00000000..e0d5dd53 > ---- /dev/null > -+++ b/src/fast_float.hh > -@@ -0,0 +1,3869 @@ > -+// fast_float by Daniel Lemire > -+// fast_float by João Paulo Magalhaes > -+// > -+// > -+// with contributions from Eugene Golushkov > -+// with contributions from Maksim Kita > -+// with contributions from Marcin Wojdyr > -+// with contributions from Neal Richardson > -+// with contributions from Tim Paine > -+// with contributions from Fabio Pellacini > -+// with contributions from Lénárd Szolnoki > -+// with contributions from Jan Pharago > -+// with contributions from Maya Warrier > -+// with contributions from Taha Khokhar > -+// > -+// > -+// MIT License Notice > -+// > -+// MIT License > -+// > -+// Copyright (c) 2021 The fast_float authors > -+// > -+// Permission is hereby granted, free of charge, to any > -+// person obtaining a copy of this software and associated > -+// documentation files (the "Software"), to deal in the > -+// Software without restriction, including without > -+// limitation the rights to use, copy, modify, merge, > -+// publish, distribute, sublicense, and/or sell copies of > -+// the Software, and to permit persons to whom the Software > -+// is furnished to do so, subject to the following > -+// conditions: > -+// > -+// The above copyright notice and this permission notice > -+// shall be included in all copies or substantial portions > -+// of the Software. > -+// > -+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF > -+// ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED > -+// TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A > -+// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT > -+// SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY > -+// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION > -+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR > -+// IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER > -+// DEALINGS IN THE SOFTWARE. > -+// > -+ > -+#ifndef FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H > -+#define FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H > -+ > -+#ifdef __has_include > -+#if __has_include(<version>) > -+#include <version> > -+#endif > -+#endif > -+ > -+// Testing for https://wg21.link/N3652, adopted in C++14 > -+#if __cpp_constexpr >= 201304 > -+#define FASTFLOAT_CONSTEXPR14 constexpr > -+#else > -+#define FASTFLOAT_CONSTEXPR14 > -+#endif > -+ > -+#if defined(__cpp_lib_bit_cast) && __cpp_lib_bit_cast >= 201806L > -+#define FASTFLOAT_HAS_BIT_CAST 1 > -+#else > -+#define FASTFLOAT_HAS_BIT_CAST 0 > -+#endif > -+ > -+#if defined(__cpp_lib_is_constant_evaluated) && \ > -+ __cpp_lib_is_constant_evaluated >= 201811L > -+#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 1 > -+#else > -+#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 0 > -+#endif > -+ > -+// Testing for relevant C++20 constexpr library features > -+#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED && FASTFLOAT_HAS_BIT_CAST && \ > -+ __cpp_lib_constexpr_algorithms >= 201806L /*For std::copy and std::fill*/ > -+#define FASTFLOAT_CONSTEXPR20 constexpr > -+#define FASTFLOAT_IS_CONSTEXPR 1 > -+#else > -+#define FASTFLOAT_CONSTEXPR20 > -+#define FASTFLOAT_IS_CONSTEXPR 0 > -+#endif > -+ > -+#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L) > -+#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 0 > -+#else > -+#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 1 > -+#endif > -+ > -+#endif // FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H > -+ > -+#ifndef FASTFLOAT_FLOAT_COMMON_H > -+#define FASTFLOAT_FLOAT_COMMON_H > -+ > -+#include <cfloat> > -+#include <cstdint> > -+#include <cassert> > -+#include <cstring> > -+#include <type_traits> > -+#include <system_error> > -+#ifdef __has_include > -+#if __has_include(<stdfloat>) && (__cplusplus > 202002L || _MSVC_LANG > 202002L) > -+#include <stdfloat> > -+#endif > -+#endif > -+ > -+namespace fast_float { > -+ > -+#define FASTFLOAT_JSONFMT (1 << 5) > -+#define FASTFLOAT_FORTRANFMT (1 << 6) > -+ > -+enum chars_format { > -+ scientific = 1 << 0, > -+ fixed = 1 << 2, > -+ hex = 1 << 3, > -+ no_infnan = 1 << 4, > -+ // RFC 8259: https://datatracker.ietf.org/doc/html/rfc8259#section-6 > -+ json = FASTFLOAT_JSONFMT | fixed | scientific | no_infnan, > -+ // Extension of RFC 8259 where, e.g., "inf" and "nan" are allowed. > -+ json_or_infnan = FASTFLOAT_JSONFMT | fixed | scientific, > -+ fortran = FASTFLOAT_FORTRANFMT | fixed | scientific, > -+ general = fixed | scientific > -+}; > -+ > -+template <typename UC> struct from_chars_result_t { > -+ UC const *ptr; > -+ std::errc ec; > -+}; > -+using from_chars_result = from_chars_result_t<char>; > -+ > -+template <typename UC> struct parse_options_t { > -+ constexpr explicit parse_options_t(chars_format fmt = chars_format::general, > -+ UC dot = UC('.')) > -+ : format(fmt), decimal_point(dot) {} > -+ > -+ /** Which number formats are accepted */ > -+ chars_format format; > -+ /** The character used as decimal point */ > -+ UC decimal_point; > -+}; > -+using parse_options = parse_options_t<char>; > -+ > -+} // namespace fast_float > -+ > -+#if FASTFLOAT_HAS_BIT_CAST > -+#include <bit> > -+#endif > -+ > -+#if (defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ > -+ defined(__amd64) || defined(__aarch64__) || defined(_M_ARM64) || \ > -+ defined(__MINGW64__) || defined(__s390x__) || \ > -+ (defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || \ > -+ defined(__PPC64LE__)) || \ > -+ defined(__loongarch64)) > -+#define FASTFLOAT_64BIT 1 > -+#elif (defined(__i386) || defined(__i386__) || defined(_M_IX86) || \ > -+ defined(__arm__) || defined(_M_ARM) || defined(__ppc__) || \ > -+ defined(__MINGW32__) || defined(__EMSCRIPTEN__)) > -+#define FASTFLOAT_32BIT 1 > -+#else > -+ // Need to check incrementally, since SIZE_MAX is a size_t, avoid overflow. > -+// We can never tell the register width, but the SIZE_MAX is a good > -+// approximation. UINTPTR_MAX and INTPTR_MAX are optional, so avoid them for max > -+// portability. > -+#if SIZE_MAX == 0xffff > -+#error Unknown platform (16-bit, unsupported) > -+#elif SIZE_MAX == 0xffffffff > -+#define FASTFLOAT_32BIT 1 > -+#elif SIZE_MAX == 0xffffffffffffffff > -+#define FASTFLOAT_64BIT 1 > -+#else > -+#error Unknown platform (not 32-bit, not 64-bit?) > -+#endif > -+#endif > -+ > -+#if ((defined(_WIN32) || defined(_WIN64)) && !defined(__clang__)) || \ > -+ (defined(_M_ARM64) && !defined(__MINGW32__)) > -+#include <intrin.h> > -+#endif > -+ > -+#if defined(_MSC_VER) && !defined(__clang__) > -+#define FASTFLOAT_VISUAL_STUDIO 1 > -+#endif > -+ > -+#if defined __BYTE_ORDER__ && defined __ORDER_BIG_ENDIAN__ > -+#define FASTFLOAT_IS_BIG_ENDIAN (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) > -+#elif defined _WIN32 > -+#define FASTFLOAT_IS_BIG_ENDIAN 0 > -+#else > -+#if defined(__APPLE__) || defined(__FreeBSD__) > -+#include <machine/endian.h> > -+#elif defined(sun) || defined(__sun) > -+#include <sys/byteorder.h> > -+#elif defined(__MVS__) > -+#include <sys/endian.h> > -+#else > -+#ifdef __has_include > -+#if __has_include(<endian.h>) > -+#include <endian.h> > -+#endif //__has_include(<endian.h>) > -+#endif //__has_include > -+#endif > -+# > -+#ifndef __BYTE_ORDER__ > -+// safe choice > -+#define FASTFLOAT_IS_BIG_ENDIAN 0 > -+#endif > -+# > -+#ifndef __ORDER_LITTLE_ENDIAN__ > -+// safe choice > -+#define FASTFLOAT_IS_BIG_ENDIAN 0 > -+#endif > -+# > -+#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ > -+#define FASTFLOAT_IS_BIG_ENDIAN 0 > -+#else > -+#define FASTFLOAT_IS_BIG_ENDIAN 1 > -+#endif > -+#endif > -+ > -+#if defined(__SSE2__) || (defined(FASTFLOAT_VISUAL_STUDIO) && \ > -+ (defined(_M_AMD64) || defined(_M_X64) || \ > -+ (defined(_M_IX86_FP) && _M_IX86_FP == 2))) > -+#define FASTFLOAT_SSE2 1 > -+#endif > -+ > -+#if defined(__aarch64__) || defined(_M_ARM64) > -+#define FASTFLOAT_NEON 1 > -+#endif > -+ > -+#if defined(FASTFLOAT_SSE2) || defined(FASTFLOAT_NEON) > -+#define FASTFLOAT_HAS_SIMD 1 > -+#endif > -+ > -+#if defined(__GNUC__) > -+// disable -Wcast-align=strict (GCC only) > -+#define FASTFLOAT_SIMD_DISABLE_WARNINGS \ > -+ _Pragma("GCC diagnostic push") \ > -+ _Pragma("GCC diagnostic ignored \"-Wcast-align\"") > -+#else > -+#define FASTFLOAT_SIMD_DISABLE_WARNINGS > -+#endif > -+ > -+#if defined(__GNUC__) > -+#define FASTFLOAT_SIMD_RESTORE_WARNINGS _Pragma("GCC diagnostic pop") > -+#else > -+#define FASTFLOAT_SIMD_RESTORE_WARNINGS > -+#endif > -+ > -+#ifdef FASTFLOAT_VISUAL_STUDIO > -+#define fastfloat_really_inline __forceinline > -+#else > -+#define fastfloat_really_inline inline __attribute__((always_inline)) > -+#endif > -+ > -+#ifndef FASTFLOAT_ASSERT > -+#define FASTFLOAT_ASSERT(x) \ > -+ { ((void)(x)); } > -+#endif > -+ > -+#ifndef FASTFLOAT_DEBUG_ASSERT > -+#define FASTFLOAT_DEBUG_ASSERT(x) \ > -+ { ((void)(x)); } > -+#endif > -+ > -+// rust style `try!()` macro, or `?` operator > -+#define FASTFLOAT_TRY(x) \ > -+ { \ > -+ if (!(x)) \ > -+ return false; \ > -+ } > -+ > -+#define FASTFLOAT_ENABLE_IF(...) \ > -+ typename std::enable_if<(__VA_ARGS__), int>::type > -+ > -+namespace fast_float { > -+ > -+fastfloat_really_inline constexpr bool cpp20_and_in_constexpr() { > -+#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED > -+ return std::is_constant_evaluated(); > -+#else > -+ return false; > -+#endif > -+} > -+ > -+template <typename T> > -+fastfloat_really_inline constexpr bool is_supported_float_type() { > -+ return std::is_same<T, float>::value || std::is_same<T, double>::value > -+#if __STDCPP_FLOAT32_T__ > -+ || std::is_same<T, std::float32_t>::value > -+#endif > -+#if __STDCPP_FLOAT64_T__ > -+ || std::is_same<T, std::float64_t>::value > -+#endif > -+ ; > -+} > -+ > -+template <typename UC> > -+fastfloat_really_inline constexpr bool is_supported_char_type() { > -+ return std::is_same<UC, char>::value || std::is_same<UC, wchar_t>::value || > -+ std::is_same<UC, char16_t>::value || std::is_same<UC, char32_t>::value; > -+} > -+ > -+// Compares two ASCII strings in a case insensitive manner. > -+template <typename UC> > -+inline FASTFLOAT_CONSTEXPR14 bool > -+fastfloat_strncasecmp(UC const *input1, UC const *input2, size_t length) { > -+ char running_diff{0}; > -+ for (size_t i = 0; i < length; ++i) { > -+ running_diff |= (char(input1[i]) ^ char(input2[i])); > -+ } > -+ return (running_diff == 0) || (running_diff == 32); > -+} > -+ > -+#ifndef FLT_EVAL_METHOD > -+#error "FLT_EVAL_METHOD should be defined, please include cfloat." > -+#endif > -+ > -+// a pointer and a length to a contiguous block of memory > -+template <typename T> struct span { > -+ const T *ptr; > -+ size_t length; > -+ constexpr span(const T *_ptr, size_t _length) : ptr(_ptr), length(_length) {} > -+ constexpr span() : ptr(nullptr), length(0) {} > -+ > -+ constexpr size_t len() const noexcept { return length; } > -+ > -+ FASTFLOAT_CONSTEXPR14 const T &operator[](size_t index) const noexcept { > -+ FASTFLOAT_DEBUG_ASSERT(index < length); > -+ return ptr[index]; > -+ } > -+}; > -+ > -+struct value128 { > -+ uint64_t low; > -+ uint64_t high; > -+ constexpr value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {} > -+ constexpr value128() : low(0), high(0) {} > -+}; > -+ > -+/* Helper C++14 constexpr generic implementation of leading_zeroes */ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int > -+leading_zeroes_generic(uint64_t input_num, int last_bit = 0) { > -+ if (input_num & uint64_t(0xffffffff00000000)) { > -+ input_num >>= 32; > -+ last_bit |= 32; > -+ } > -+ if (input_num & uint64_t(0xffff0000)) { > -+ input_num >>= 16; > -+ last_bit |= 16; > -+ } > -+ if (input_num & uint64_t(0xff00)) { > -+ input_num >>= 8; > -+ last_bit |= 8; > -+ } > -+ if (input_num & uint64_t(0xf0)) { > -+ input_num >>= 4; > -+ last_bit |= 4; > -+ } > -+ if (input_num & uint64_t(0xc)) { > -+ input_num >>= 2; > -+ last_bit |= 2; > -+ } > -+ if (input_num & uint64_t(0x2)) { /* input_num >>= 1; */ > -+ last_bit |= 1; > -+ } > -+ return 63 - last_bit; > -+} > -+ > -+/* result might be undefined when input_num is zero */ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 int > -+leading_zeroes(uint64_t input_num) { > -+ assert(input_num > 0); > -+ if (cpp20_and_in_constexpr()) { > -+ return leading_zeroes_generic(input_num); > -+ } > -+#ifdef FASTFLOAT_VISUAL_STUDIO > -+#if defined(_M_X64) || defined(_M_ARM64) > -+ unsigned long leading_zero = 0; > -+ // Search the mask data from most significant bit (MSB) > -+ // to least significant bit (LSB) for a set bit (1). > -+ _BitScanReverse64(&leading_zero, input_num); > -+ return (int)(63 - leading_zero); > -+#else > -+ return leading_zeroes_generic(input_num); > -+#endif > -+#else > -+ return __builtin_clzll(input_num); > -+#endif > -+} > -+ > -+// slow emulation routine for 32-bit > -+fastfloat_really_inline constexpr uint64_t emulu(uint32_t x, uint32_t y) { > -+ return x * (uint64_t)y; > -+} > -+ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t > -+umul128_generic(uint64_t ab, uint64_t cd, uint64_t *hi) { > -+ uint64_t ad = emulu((uint32_t)(ab >> 32), (uint32_t)cd); > -+ uint64_t bd = emulu((uint32_t)ab, (uint32_t)cd); > -+ uint64_t adbc = ad + emulu((uint32_t)ab, (uint32_t)(cd >> 32)); > -+ uint64_t adbc_carry = (uint64_t)(adbc < ad); > -+ uint64_t lo = bd + (adbc << 32); > -+ *hi = emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) + > -+ (adbc_carry << 32) + (uint64_t)(lo < bd); > -+ return lo; > -+} > -+ > -+#ifdef FASTFLOAT_32BIT > -+ > -+// slow emulation routine for 32-bit > -+#if !defined(__MINGW64__) > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t _umul128(uint64_t ab, > -+ uint64_t cd, > -+ uint64_t *hi) { > -+ return umul128_generic(ab, cd, hi); > -+} > -+#endif // !__MINGW64__ > -+ > -+#endif // FASTFLOAT_32BIT > -+ > -+// compute 64-bit a*b > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128 > -+full_multiplication(uint64_t a, uint64_t b) { > -+ if (cpp20_and_in_constexpr()) { > -+ value128 answer; > -+ answer.low = umul128_generic(a, b, &answer.high); > -+ return answer; > -+ } > -+ value128 answer; > -+#if defined(_M_ARM64) && !defined(__MINGW32__) > -+ // ARM64 has native support for 64-bit multiplications, no need to emulate > -+ // But MinGW on ARM64 doesn't have native support for 64-bit multiplications > -+ answer.high = __umulh(a, b); > -+ answer.low = a * b; > -+#elif defined(FASTFLOAT_32BIT) || \ > -+ (defined(_WIN64) && !defined(__clang__) && !defined(_M_ARM64)) > -+ answer.low = _umul128(a, b, &answer.high); // _umul128 not available on ARM64 > -+#elif defined(FASTFLOAT_64BIT) && defined(__SIZEOF_INT128__) > -+ __uint128_t r = ((__uint128_t)a) * b; > -+ answer.low = uint64_t(r); > -+ answer.high = uint64_t(r >> 64); > -+#else > -+ answer.low = umul128_generic(a, b, &answer.high); > -+#endif > -+ return answer; > -+} > -+ > -+struct adjusted_mantissa { > -+ uint64_t mantissa{0}; > -+ int32_t power2{0}; // a negative value indicates an invalid result > -+ adjusted_mantissa() = default; > -+ constexpr bool operator==(const adjusted_mantissa &o) const { > -+ return mantissa == o.mantissa && power2 == o.power2; > -+ } > -+ constexpr bool operator!=(const adjusted_mantissa &o) const { > -+ return mantissa != o.mantissa || power2 != o.power2; > -+ } > -+}; > -+ > -+// Bias so we can get the real exponent with an invalid adjusted_mantissa. > -+constexpr static int32_t invalid_am_bias = -0x8000; > -+ > -+// used for binary_format_lookup_tables<T>::max_mantissa > -+constexpr uint64_t constant_55555 = 5 * 5 * 5 * 5 * 5; > -+ > -+template <typename T, typename U = void> struct binary_format_lookup_tables; > -+ > -+template <typename T> struct binary_format : binary_format_lookup_tables<T> { > -+ using equiv_uint = > -+ typename std::conditional<sizeof(T) == 4, uint32_t, uint64_t>::type; > -+ > -+ static inline constexpr int mantissa_explicit_bits(); > -+ static inline constexpr int minimum_exponent(); > -+ static inline constexpr int infinite_power(); > -+ static inline constexpr int sign_index(); > -+ static inline constexpr int > -+ min_exponent_fast_path(); // used when fegetround() == FE_TONEAREST > -+ static inline constexpr int max_exponent_fast_path(); > -+ static inline constexpr int max_exponent_round_to_even(); > -+ static inline constexpr int min_exponent_round_to_even(); > -+ static inline constexpr uint64_t max_mantissa_fast_path(int64_t power); > -+ static inline constexpr uint64_t > -+ max_mantissa_fast_path(); // used when fegetround() == FE_TONEAREST > -+ static inline constexpr int largest_power_of_ten(); > -+ static inline constexpr int smallest_power_of_ten(); > -+ static inline constexpr T exact_power_of_ten(int64_t power); > -+ static inline constexpr size_t max_digits(); > -+ static inline constexpr equiv_uint exponent_mask(); > -+ static inline constexpr equiv_uint mantissa_mask(); > -+ static inline constexpr equiv_uint hidden_bit_mask(); > -+}; > -+ > -+template <typename U> struct binary_format_lookup_tables<double, U> { > -+ static constexpr double powers_of_ten[] = { > -+ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, > -+ 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; > -+ > -+ // Largest integer value v so that (5**index * v) <= 1<<53. > -+ // 0x20000000000000 == 1 << 53 > -+ static constexpr uint64_t max_mantissa[] = { > -+ 0x20000000000000, > -+ 0x20000000000000 / 5, > -+ 0x20000000000000 / (5 * 5), > -+ 0x20000000000000 / (5 * 5 * 5), > -+ 0x20000000000000 / (5 * 5 * 5 * 5), > -+ 0x20000000000000 / (constant_55555), > -+ 0x20000000000000 / (constant_55555 * 5), > -+ 0x20000000000000 / (constant_55555 * 5 * 5), > -+ 0x20000000000000 / (constant_55555 * 5 * 5 * 5), > -+ 0x20000000000000 / (constant_55555 * 5 * 5 * 5 * 5), > -+ 0x20000000000000 / (constant_55555 * constant_55555), > -+ 0x20000000000000 / (constant_55555 * constant_55555 * 5), > -+ 0x20000000000000 / (constant_55555 * constant_55555 * 5 * 5), > -+ 0x20000000000000 / (constant_55555 * constant_55555 * 5 * 5 * 5), > -+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555), > -+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5), > -+ 0x20000000000000 / > -+ (constant_55555 * constant_55555 * constant_55555 * 5 * 5), > -+ 0x20000000000000 / > -+ (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5), > -+ 0x20000000000000 / > -+ (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5), > -+ 0x20000000000000 / > -+ (constant_55555 * constant_55555 * constant_55555 * constant_55555), > -+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * > -+ constant_55555 * 5), > -+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * > -+ constant_55555 * 5 * 5), > -+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * > -+ constant_55555 * 5 * 5 * 5), > -+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * > -+ constant_55555 * 5 * 5 * 5 * 5)}; > -+}; > -+ > -+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE > -+ > -+template <typename U> > -+constexpr double binary_format_lookup_tables<double, U>::powers_of_ten[]; > -+ > -+template <typename U> > -+constexpr uint64_t binary_format_lookup_tables<double, U>::max_mantissa[]; > -+ > -+#endif > -+ > -+template <typename U> struct binary_format_lookup_tables<float, U> { > -+ static constexpr float powers_of_ten[] = {1e0f, 1e1f, 1e2f, 1e3f, 1e4f, 1e5f, > -+ 1e6f, 1e7f, 1e8f, 1e9f, 1e10f}; > -+ > -+ // Largest integer value v so that (5**index * v) <= 1<<24. > -+ // 0x1000000 == 1<<24 > -+ static constexpr uint64_t max_mantissa[] = { > -+ 0x1000000, > -+ 0x1000000 / 5, > -+ 0x1000000 / (5 * 5), > -+ 0x1000000 / (5 * 5 * 5), > -+ 0x1000000 / (5 * 5 * 5 * 5), > -+ 0x1000000 / (constant_55555), > -+ 0x1000000 / (constant_55555 * 5), > -+ 0x1000000 / (constant_55555 * 5 * 5), > -+ 0x1000000 / (constant_55555 * 5 * 5 * 5), > -+ 0x1000000 / (constant_55555 * 5 * 5 * 5 * 5), > -+ 0x1000000 / (constant_55555 * constant_55555), > -+ 0x1000000 / (constant_55555 * constant_55555 * 5)}; > -+}; > -+ > -+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE > -+ > -+template <typename U> > -+constexpr float binary_format_lookup_tables<float, U>::powers_of_ten[]; > -+ > -+template <typename U> > -+constexpr uint64_t binary_format_lookup_tables<float, U>::max_mantissa[]; > -+ > -+#endif > -+ > -+template <> > -+inline constexpr int binary_format<double>::min_exponent_fast_path() { > -+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) > -+ return 0; > -+#else > -+ return -22; > -+#endif > -+} > -+ > -+template <> > -+inline constexpr int binary_format<float>::min_exponent_fast_path() { > -+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) > -+ return 0; > -+#else > -+ return -10; > -+#endif > -+} > -+ > -+template <> > -+inline constexpr int binary_format<double>::mantissa_explicit_bits() { > -+ return 52; > -+} > -+template <> > -+inline constexpr int binary_format<float>::mantissa_explicit_bits() { > -+ return 23; > -+} > -+ > -+template <> > -+inline constexpr int binary_format<double>::max_exponent_round_to_even() { > -+ return 23; > -+} > -+ > -+template <> > -+inline constexpr int binary_format<float>::max_exponent_round_to_even() { > -+ return 10; > -+} > -+ > -+template <> > -+inline constexpr int binary_format<double>::min_exponent_round_to_even() { > -+ return -4; > -+} > -+ > -+template <> > -+inline constexpr int binary_format<float>::min_exponent_round_to_even() { > -+ return -17; > -+} > -+ > -+template <> inline constexpr int binary_format<double>::minimum_exponent() { > -+ return -1023; > -+} > -+template <> inline constexpr int binary_format<float>::minimum_exponent() { > -+ return -127; > -+} > -+ > -+template <> inline constexpr int binary_format<double>::infinite_power() { > -+ return 0x7FF; > -+} > -+template <> inline constexpr int binary_format<float>::infinite_power() { > -+ return 0xFF; > -+} > -+ > -+template <> inline constexpr int binary_format<double>::sign_index() { > -+ return 63; > -+} > -+template <> inline constexpr int binary_format<float>::sign_index() { > -+ return 31; > -+} > -+ > -+template <> > -+inline constexpr int binary_format<double>::max_exponent_fast_path() { > -+ return 22; > -+} > -+template <> > -+inline constexpr int binary_format<float>::max_exponent_fast_path() { > -+ return 10; > -+} > -+ > -+template <> > -+inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path() { > -+ return uint64_t(2) << mantissa_explicit_bits(); > -+} > -+template <> > -+inline constexpr uint64_t > -+binary_format<double>::max_mantissa_fast_path(int64_t power) { > -+ // caller is responsible to ensure that > -+ // power >= 0 && power <= 22 > -+ // > -+ // Work around clang bug https://godbolt.org/z/zedh7rrhc > -+ return (void)max_mantissa[0], max_mantissa[power]; > -+} > -+template <> > -+inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path() { > -+ return uint64_t(2) << mantissa_explicit_bits(); > -+} > -+template <> > -+inline constexpr uint64_t > -+binary_format<float>::max_mantissa_fast_path(int64_t power) { > -+ // caller is responsible to ensure that > -+ // power >= 0 && power <= 10 > -+ // > -+ // Work around clang bug https://godbolt.org/z/zedh7rrhc > -+ return (void)max_mantissa[0], max_mantissa[power]; > -+} > -+ > -+template <> > -+inline constexpr double > -+binary_format<double>::exact_power_of_ten(int64_t power) { > -+ // Work around clang bug https://godbolt.org/z/zedh7rrhc > -+ return (void)powers_of_ten[0], powers_of_ten[power]; > -+} > -+template <> > -+inline constexpr float binary_format<float>::exact_power_of_ten(int64_t power) { > -+ // Work around clang bug https://godbolt.org/z/zedh7rrhc > -+ return (void)powers_of_ten[0], powers_of_ten[power]; > -+} > -+ > -+template <> inline constexpr int binary_format<double>::largest_power_of_ten() { > -+ return 308; > -+} > -+template <> inline constexpr int binary_format<float>::largest_power_of_ten() { > -+ return 38; > -+} > -+ > -+template <> > -+inline constexpr int binary_format<double>::smallest_power_of_ten() { > -+ return -342; > -+} > -+template <> inline constexpr int binary_format<float>::smallest_power_of_ten() { > -+ return -64; > -+} > -+ > -+template <> inline constexpr size_t binary_format<double>::max_digits() { > -+ return 769; > -+} > -+template <> inline constexpr size_t binary_format<float>::max_digits() { > -+ return 114; > -+} > -+ > -+template <> > -+inline constexpr binary_format<float>::equiv_uint > -+binary_format<float>::exponent_mask() { > -+ return 0x7F800000; > -+} > -+template <> > -+inline constexpr binary_format<double>::equiv_uint > -+binary_format<double>::exponent_mask() { > -+ return 0x7FF0000000000000; > -+} > -+ > -+template <> > -+inline constexpr binary_format<float>::equiv_uint > -+binary_format<float>::mantissa_mask() { > -+ return 0x007FFFFF; > -+} > -+template <> > -+inline constexpr binary_format<double>::equiv_uint > -+binary_format<double>::mantissa_mask() { > -+ return 0x000FFFFFFFFFFFFF; > -+} > -+ > -+template <> > -+inline constexpr binary_format<float>::equiv_uint > -+binary_format<float>::hidden_bit_mask() { > -+ return 0x00800000; > -+} > -+template <> > -+inline constexpr binary_format<double>::equiv_uint > -+binary_format<double>::hidden_bit_mask() { > -+ return 0x0010000000000000; > -+} > -+ > -+template <typename T> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void > -+to_float(bool negative, adjusted_mantissa am, T &value) { > -+ using fastfloat_uint = typename binary_format<T>::equiv_uint; > -+ fastfloat_uint word = (fastfloat_uint)am.mantissa; > -+ word |= fastfloat_uint(am.power2) > -+ << binary_format<T>::mantissa_explicit_bits(); > -+ word |= fastfloat_uint(negative) << binary_format<T>::sign_index(); > -+#if FASTFLOAT_HAS_BIT_CAST > -+ value = std::bit_cast<T>(word); > -+#else > -+ ::memcpy(&value, &word, sizeof(T)); > -+#endif > -+} > -+ > -+#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default > -+template <typename = void> struct space_lut { > -+ static constexpr bool value[] = { > -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > -+ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; > -+}; > -+ > -+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE > -+ > -+template <typename T> constexpr bool space_lut<T>::value[]; > -+ > -+#endif > -+ > -+inline constexpr bool is_space(uint8_t c) { return space_lut<>::value[c]; } > -+#endif > -+ > -+template <typename UC> static constexpr uint64_t int_cmp_zeros() { > -+ static_assert((sizeof(UC) == 1) || (sizeof(UC) == 2) || (sizeof(UC) == 4), > -+ "Unsupported character size"); > -+ return (sizeof(UC) == 1) ? 0x3030303030303030 > -+ : (sizeof(UC) == 2) > -+ ? (uint64_t(UC('0')) << 48 | uint64_t(UC('0')) << 32 | > -+ uint64_t(UC('0')) << 16 | UC('0')) > -+ : (uint64_t(UC('0')) << 32 | UC('0')); > -+} > -+template <typename UC> static constexpr int int_cmp_len() { > -+ return sizeof(uint64_t) / sizeof(UC); > -+} > -+template <typename UC> static constexpr UC const *str_const_nan() { > -+ return nullptr; > -+} > -+template <> constexpr char const *str_const_nan<char>() { return "nan"; } > -+template <> constexpr wchar_t const *str_const_nan<wchar_t>() { return L"nan"; } > -+template <> constexpr char16_t const *str_const_nan<char16_t>() { > -+ return u"nan"; > -+} > -+template <> constexpr char32_t const *str_const_nan<char32_t>() { > -+ return U"nan"; > -+} > -+template <typename UC> static constexpr UC const *str_const_inf() { > -+ return nullptr; > -+} > -+template <> constexpr char const *str_const_inf<char>() { return "infinity"; } > -+template <> constexpr wchar_t const *str_const_inf<wchar_t>() { > -+ return L"infinity"; > -+} > -+template <> constexpr char16_t const *str_const_inf<char16_t>() { > -+ return u"infinity"; > -+} > -+template <> constexpr char32_t const *str_const_inf<char32_t>() { > -+ return U"infinity"; > -+} > -+ > -+template <typename = void> struct int_luts { > -+ static constexpr uint8_t chdigit[] = { > -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > -+ 255, 255, 255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 255, 255, > -+ 255, 255, 255, 255, 255, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, > -+ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, > -+ 35, 255, 255, 255, 255, 255, 255, 10, 11, 12, 13, 14, 15, 16, 17, > -+ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, > -+ 33, 34, 35, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > -+ 255}; > -+ > -+ static constexpr size_t maxdigits_u64[] = { > -+ 64, 41, 32, 28, 25, 23, 22, 21, 20, 19, 18, 18, 17, 17, 16, 16, 16, 16, > -+ 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13}; > -+ > -+ static constexpr uint64_t min_safe_u64[] = { > -+ 9223372036854775808ull, 12157665459056928801ull, 4611686018427387904, > -+ 7450580596923828125, 4738381338321616896, 3909821048582988049, > -+ 9223372036854775808ull, 12157665459056928801ull, 10000000000000000000ull, > -+ 5559917313492231481, 2218611106740436992, 8650415919381337933, > -+ 2177953337809371136, 6568408355712890625, 1152921504606846976, > -+ 2862423051509815793, 6746640616477458432, 15181127029874798299ull, > -+ 1638400000000000000, 3243919932521508681, 6221821273427820544, > -+ 11592836324538749809ull, 876488338465357824, 1490116119384765625, > -+ 2481152873203736576, 4052555153018976267, 6502111422497947648, > -+ 10260628712958602189ull, 15943230000000000000ull, 787662783788549761, > -+ 1152921504606846976, 1667889514952984961, 2386420683693101056, > -+ 3379220508056640625, 4738381338321616896}; > -+}; > -+ > -+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE > -+ > -+template <typename T> constexpr uint8_t int_luts<T>::chdigit[]; > -+ > -+template <typename T> constexpr size_t int_luts<T>::maxdigits_u64[]; > -+ > -+template <typename T> constexpr uint64_t int_luts<T>::min_safe_u64[]; > -+ > -+#endif > -+ > -+template <typename UC> > -+fastfloat_really_inline constexpr uint8_t ch_to_digit(UC c) { > -+ return int_luts<>::chdigit[static_cast<unsigned char>(c)]; > -+} > -+ > -+fastfloat_really_inline constexpr size_t max_digits_u64(int base) { > -+ return int_luts<>::maxdigits_u64[base - 2]; > -+} > -+ > -+// If a u64 is exactly max_digits_u64() in length, this is > -+// the value below which it has definitely overflowed. > -+fastfloat_really_inline constexpr uint64_t min_safe_u64(int base) { > -+ return int_luts<>::min_safe_u64[base - 2]; > -+} > -+ > -+} // namespace fast_float > -+ > -+#endif > -+ > -+ > -+#ifndef FASTFLOAT_FAST_FLOAT_H > -+#define FASTFLOAT_FAST_FLOAT_H > -+ > -+ > -+namespace fast_float { > -+/** > -+ * This function parses the character sequence [first,last) for a number. It > -+ * parses floating-point numbers expecting a locale-indepent format equivalent > -+ * to what is used by std::strtod in the default ("C") locale. The resulting > -+ * floating-point value is the closest floating-point values (using either float > -+ * or double), using the "round to even" convention for values that would > -+ * otherwise fall right in-between two values. That is, we provide exact parsing > -+ * according to the IEEE standard. > -+ * > -+ * Given a successful parse, the pointer (`ptr`) in the returned value is set to > -+ * point right after the parsed number, and the `value` referenced is set to the > -+ * parsed value. In case of error, the returned `ec` contains a representative > -+ * error, otherwise the default (`std::errc()`) value is stored. > -+ * > -+ * The implementation does not throw and does not allocate memory (e.g., with > -+ * `new` or `malloc`). > -+ * > -+ * Like the C++17 standard, the `fast_float::from_chars` functions take an > -+ * optional last argument of the type `fast_float::chars_format`. It is a bitset > -+ * value: we check whether `fmt & fast_float::chars_format::fixed` and `fmt & > -+ * fast_float::chars_format::scientific` are set to determine whether we allow > -+ * the fixed point and scientific notation respectively. The default is > -+ * `fast_float::chars_format::general` which allows both `fixed` and > -+ * `scientific`. > -+ */ > -+template <typename T, typename UC = char, > -+ typename = FASTFLOAT_ENABLE_IF(is_supported_float_type<T>())> > -+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> > -+from_chars(UC const *first, UC const *last, T &value, > -+ chars_format fmt = chars_format::general) noexcept; > -+ > -+/** > -+ * Like from_chars, but accepts an `options` argument to govern number parsing. > -+ */ > -+template <typename T, typename UC = char> > -+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> > -+from_chars_advanced(UC const *first, UC const *last, T &value, > -+ parse_options_t<UC> options) noexcept; > -+/** > -+ * from_chars for integer types. > -+ */ > -+template <typename T, typename UC = char, > -+ typename = FASTFLOAT_ENABLE_IF(!is_supported_float_type<T>())> > -+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> > -+from_chars(UC const *first, UC const *last, T &value, int base = 10) noexcept; > -+ > -+} // namespace fast_float > -+#endif // FASTFLOAT_FAST_FLOAT_H > -+ > -+#ifndef FASTFLOAT_ASCII_NUMBER_H > -+#define FASTFLOAT_ASCII_NUMBER_H > -+ > -+#include <cctype> > -+#include <cstdint> > -+#include <cstring> > -+#include <iterator> > -+#include <limits> > -+#include <type_traits> > -+ > -+ > -+#ifdef FASTFLOAT_SSE2 > -+#include <emmintrin.h> > -+#endif > -+ > -+#ifdef FASTFLOAT_NEON > -+#include <arm_neon.h> > -+#endif > -+ > -+namespace fast_float { > -+ > -+template <typename UC> fastfloat_really_inline constexpr bool has_simd_opt() { > -+#ifdef FASTFLOAT_HAS_SIMD > -+ return std::is_same<UC, char16_t>::value; > -+#else > -+ return false; > -+#endif > -+} > -+ > -+// Next function can be micro-optimized, but compilers are entirely > -+// able to optimize it well. > -+template <typename UC> > -+fastfloat_really_inline constexpr bool is_integer(UC c) noexcept { > -+ return !(c > UC('9') || c < UC('0')); > -+} > -+ > -+fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) { > -+ return (val & 0xFF00000000000000) >> 56 | (val & 0x00FF000000000000) >> 40 | > -+ (val & 0x0000FF0000000000) >> 24 | (val & 0x000000FF00000000) >> 8 | > -+ (val & 0x00000000FF000000) << 8 | (val & 0x0000000000FF0000) << 24 | > -+ (val & 0x000000000000FF00) << 40 | (val & 0x00000000000000FF) << 56; > -+} > -+ > -+// Read 8 UC into a u64. Truncates UC if not char. > -+template <typename UC> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t > -+read8_to_u64(const UC *chars) { > -+ if (cpp20_and_in_constexpr() || !std::is_same<UC, char>::value) { > -+ uint64_t val = 0; > -+ for (int i = 0; i < 8; ++i) { > -+ val |= uint64_t(uint8_t(*chars)) << (i * 8); > -+ ++chars; > -+ } > -+ return val; > -+ } > -+ uint64_t val; > -+ ::memcpy(&val, chars, sizeof(uint64_t)); > -+#if FASTFLOAT_IS_BIG_ENDIAN == 1 > -+ // Need to read as-if the number was in little-endian order. > -+ val = byteswap(val); > -+#endif > -+ return val; > -+} > -+ > -+#ifdef FASTFLOAT_SSE2 > -+ > -+fastfloat_really_inline uint64_t simd_read8_to_u64(const __m128i data) { > -+ FASTFLOAT_SIMD_DISABLE_WARNINGS > -+ const __m128i packed = _mm_packus_epi16(data, data); > -+#ifdef FASTFLOAT_64BIT > -+ return uint64_t(_mm_cvtsi128_si64(packed)); > -+#else > -+ uint64_t value; > -+ // Visual Studio + older versions of GCC don't support _mm_storeu_si64 > -+ _mm_storel_epi64(reinterpret_cast<__m128i *>(&value), packed); > -+ return value; > -+#endif > -+ FASTFLOAT_SIMD_RESTORE_WARNINGS > -+} > -+ > -+fastfloat_really_inline uint64_t simd_read8_to_u64(const char16_t *chars) { > -+ FASTFLOAT_SIMD_DISABLE_WARNINGS > -+ return simd_read8_to_u64( > -+ _mm_loadu_si128(reinterpret_cast<const __m128i *>(chars))); > -+ FASTFLOAT_SIMD_RESTORE_WARNINGS > -+} > -+ > -+#elif defined(FASTFLOAT_NEON) > -+ > -+fastfloat_really_inline uint64_t simd_read8_to_u64(const uint16x8_t data) { > -+ FASTFLOAT_SIMD_DISABLE_WARNINGS > -+ uint8x8_t utf8_packed = vmovn_u16(data); > -+ return vget_lane_u64(vreinterpret_u64_u8(utf8_packed), 0); > -+ FASTFLOAT_SIMD_RESTORE_WARNINGS > -+} > -+ > -+fastfloat_really_inline uint64_t simd_read8_to_u64(const char16_t *chars) { > -+ FASTFLOAT_SIMD_DISABLE_WARNINGS > -+ return simd_read8_to_u64( > -+ vld1q_u16(reinterpret_cast<const uint16_t *>(chars))); > -+ FASTFLOAT_SIMD_RESTORE_WARNINGS > -+} > -+ > -+#endif // FASTFLOAT_SSE2 > -+ > -+// MSVC SFINAE is broken pre-VS2017 > -+#if defined(_MSC_VER) && _MSC_VER <= 1900 > -+template <typename UC> > -+#else > -+template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0> > -+#endif > -+// dummy for compile > -+uint64_t simd_read8_to_u64(UC const *) { > -+ return 0; > -+} > -+ > -+// credit @aqrit > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint32_t > -+parse_eight_digits_unrolled(uint64_t val) { > -+ const uint64_t mask = 0x000000FF000000FF; > -+ const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32) > -+ const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32) > -+ val -= 0x3030303030303030; > -+ val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8; > -+ val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32; > -+ return uint32_t(val); > -+} > -+ > -+// Call this if chars are definitely 8 digits. > -+template <typename UC> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint32_t > -+parse_eight_digits_unrolled(UC const *chars) noexcept { > -+ if (cpp20_and_in_constexpr() || !has_simd_opt<UC>()) { > -+ return parse_eight_digits_unrolled(read8_to_u64(chars)); // truncation okay > -+ } > -+ return parse_eight_digits_unrolled(simd_read8_to_u64(chars)); > -+} > -+ > -+// credit @aqrit > -+fastfloat_really_inline constexpr bool > -+is_made_of_eight_digits_fast(uint64_t val) noexcept { > -+ return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) & > -+ 0x8080808080808080)); > -+} > -+ > -+#ifdef FASTFLOAT_HAS_SIMD > -+ > -+// Call this if chars might not be 8 digits. > -+// Using this style (instead of is_made_of_eight_digits_fast() then > -+// parse_eight_digits_unrolled()) ensures we don't load SIMD registers twice. > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool > -+simd_parse_if_eight_digits_unrolled(const char16_t *chars, > -+ uint64_t &i) noexcept { > -+ if (cpp20_and_in_constexpr()) { > -+ return false; > -+ } > -+#ifdef FASTFLOAT_SSE2 > -+ FASTFLOAT_SIMD_DISABLE_WARNINGS > -+ const __m128i data = > -+ _mm_loadu_si128(reinterpret_cast<const __m128i *>(chars)); > -+ > -+ // (x - '0') <= 9 > -+ // http://0x80.pl/articles/simd-parsing-int-sequences.html > -+ const __m128i t0 = _mm_add_epi16(data, _mm_set1_epi16(32720)); > -+ const __m128i t1 = _mm_cmpgt_epi16(t0, _mm_set1_epi16(-32759)); > -+ > -+ if (_mm_movemask_epi8(t1) == 0) { > -+ i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data)); > -+ return true; > -+ } else > -+ return false; > -+ FASTFLOAT_SIMD_RESTORE_WARNINGS > -+#elif defined(FASTFLOAT_NEON) > -+ FASTFLOAT_SIMD_DISABLE_WARNINGS > -+ const uint16x8_t data = vld1q_u16(reinterpret_cast<const uint16_t *>(chars)); > -+ > -+ // (x - '0') <= 9 > -+ // http://0x80.pl/articles/simd-parsing-int-sequences.html > -+ const uint16x8_t t0 = vsubq_u16(data, vmovq_n_u16('0')); > -+ const uint16x8_t mask = vcltq_u16(t0, vmovq_n_u16('9' - '0' + 1)); > -+ > -+ if (vminvq_u16(mask) == 0xFFFF) { > -+ i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data)); > -+ return true; > -+ } else > -+ return false; > -+ FASTFLOAT_SIMD_RESTORE_WARNINGS > -+#else > -+ (void)chars; > -+ (void)i; > -+ return false; > -+#endif // FASTFLOAT_SSE2 > -+} > -+ > -+#endif // FASTFLOAT_HAS_SIMD > -+ > -+// MSVC SFINAE is broken pre-VS2017 > -+#if defined(_MSC_VER) && _MSC_VER <= 1900 > -+template <typename UC> > -+#else > -+template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0> > -+#endif > -+// dummy for compile > -+bool simd_parse_if_eight_digits_unrolled(UC const *, uint64_t &) { > -+ return 0; > -+} > -+ > -+template <typename UC, FASTFLOAT_ENABLE_IF(!std::is_same<UC, char>::value) = 0> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void > -+loop_parse_if_eight_digits(const UC *&p, const UC *const pend, uint64_t &i) { > -+ if (!has_simd_opt<UC>()) { > -+ return; > -+ } > -+ while ((std::distance(p, pend) >= 8) && > -+ simd_parse_if_eight_digits_unrolled( > -+ p, i)) { // in rare cases, this will overflow, but that's ok > -+ p += 8; > -+ } > -+} > -+ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void > -+loop_parse_if_eight_digits(const char *&p, const char *const pend, > -+ uint64_t &i) { > -+ // optimizes better than parse_if_eight_digits_unrolled() for UC = char. > -+ while ((std::distance(p, pend) >= 8) && > -+ is_made_of_eight_digits_fast(read8_to_u64(p))) { > -+ i = i * 100000000 + > -+ parse_eight_digits_unrolled(read8_to_u64( > -+ p)); // in rare cases, this will overflow, but that's ok > -+ p += 8; > -+ } > -+} > -+ > -+enum class parse_error { > -+ no_error, > -+ // [JSON-only] The minus sign must be followed by an integer. > -+ missing_integer_after_sign, > -+ // A sign must be followed by an integer or dot. > -+ missing_integer_or_dot_after_sign, > -+ // [JSON-only] The integer part must not have leading zeros. > -+ leading_zeros_in_integer_part, > -+ // [JSON-only] The integer part must have at least one digit. > -+ no_digits_in_integer_part, > -+ // [JSON-only] If there is a decimal point, there must be digits in the > -+ // fractional part. > -+ no_digits_in_fractional_part, > -+ // The mantissa must have at least one digit. > -+ no_digits_in_mantissa, > -+ // Scientific notation requires an exponential part. > -+ missing_exponential_part, > -+}; > -+ > -+template <typename UC> struct parsed_number_string_t { > -+ int64_t exponent{0}; > -+ uint64_t mantissa{0}; > -+ UC const *lastmatch{nullptr}; > -+ bool negative{false}; > -+ bool valid{false}; > -+ bool too_many_digits{false}; > -+ // contains the range of the significant digits > -+ span<const UC> integer{}; // non-nullable > -+ span<const UC> fraction{}; // nullable > -+ parse_error error{parse_error::no_error}; > -+}; > -+ > -+using byte_span = span<const char>; > -+using parsed_number_string = parsed_number_string_t<char>; > -+ > -+template <typename UC> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC> > -+report_parse_error(UC const *p, parse_error error) { > -+ parsed_number_string_t<UC> answer; > -+ answer.valid = false; > -+ answer.lastmatch = p; > -+ answer.error = error; > -+ return answer; > -+} > -+ > -+// Assuming that you use no more than 19 digits, this will > -+// parse an ASCII string. > -+template <typename UC> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC> > -+parse_number_string(UC const *p, UC const *pend, > -+ parse_options_t<UC> options) noexcept { > -+ chars_format const fmt = options.format; > -+ UC const decimal_point = options.decimal_point; > -+ > -+ parsed_number_string_t<UC> answer; > -+ answer.valid = false; > -+ answer.too_many_digits = false; > -+ answer.negative = (*p == UC('-')); > -+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default > -+ if ((*p == UC('-')) || (!(fmt & FASTFLOAT_JSONFMT) && *p == UC('+'))) { > -+#else > -+ if (*p == UC('-')) { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here > -+#endif > -+ ++p; > -+ if (p == pend) { > -+ return report_parse_error<UC>( > -+ p, parse_error::missing_integer_or_dot_after_sign); > -+ } > -+ if (fmt & FASTFLOAT_JSONFMT) { > -+ if (!is_integer(*p)) { // a sign must be followed by an integer > -+ return report_parse_error<UC>(p, > -+ parse_error::missing_integer_after_sign); > -+ } > -+ } else { > -+ if (!is_integer(*p) && > -+ (*p != > -+ decimal_point)) { // a sign must be followed by an integer or the dot > -+ return report_parse_error<UC>( > -+ p, parse_error::missing_integer_or_dot_after_sign); > -+ } > -+ } > -+ } > -+ UC const *const start_digits = p; > -+ > -+ uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad) > -+ > -+ while ((p != pend) && is_integer(*p)) { > -+ // a multiplication by 10 is cheaper than an arbitrary integer > -+ // multiplication > -+ i = 10 * i + > -+ uint64_t(*p - > -+ UC('0')); // might overflow, we will handle the overflow later > -+ ++p; > -+ } > -+ UC const *const end_of_integer_part = p; > -+ int64_t digit_count = int64_t(end_of_integer_part - start_digits); > -+ answer.integer = span<const UC>(start_digits, size_t(digit_count)); > -+ if (fmt & FASTFLOAT_JSONFMT) { > -+ // at least 1 digit in integer part, without leading zeros > -+ if (digit_count == 0) { > -+ return report_parse_error<UC>(p, parse_error::no_digits_in_integer_part); > -+ } > -+ if ((start_digits[0] == UC('0') && digit_count > 1)) { > -+ return report_parse_error<UC>(start_digits, > -+ parse_error::leading_zeros_in_integer_part); > -+ } > -+ } > -+ > -+ int64_t exponent = 0; > -+ const bool has_decimal_point = (p != pend) && (*p == decimal_point); > -+ if (has_decimal_point) { > -+ ++p; > -+ UC const *before = p; > -+ // can occur at most twice without overflowing, but let it occur more, since > -+ // for integers with many digits, digit parsing is the primary bottleneck. > -+ loop_parse_if_eight_digits(p, pend, i); > -+ > -+ while ((p != pend) && is_integer(*p)) { > -+ uint8_t digit = uint8_t(*p - UC('0')); > -+ ++p; > -+ i = i * 10 + digit; // in rare cases, this will overflow, but that's ok > -+ } > -+ exponent = before - p; > -+ answer.fraction = span<const UC>(before, size_t(p - before)); > -+ digit_count -= exponent; > -+ } > -+ if (fmt & FASTFLOAT_JSONFMT) { > -+ // at least 1 digit in fractional part > -+ if (has_decimal_point && exponent == 0) { > -+ return report_parse_error<UC>(p, > -+ parse_error::no_digits_in_fractional_part); > -+ } > -+ } else if (digit_count == > -+ 0) { // we must have encountered at least one integer! > -+ return report_parse_error<UC>(p, parse_error::no_digits_in_mantissa); > -+ } > -+ int64_t exp_number = 0; // explicit exponential part > -+ if (((fmt & chars_format::scientific) && (p != pend) && > -+ ((UC('e') == *p) || (UC('E') == *p))) || > -+ ((fmt & FASTFLOAT_FORTRANFMT) && (p != pend) && > -+ ((UC('+') == *p) || (UC('-') == *p) || (UC('d') == *p) || > -+ (UC('D') == *p)))) { > -+ UC const *location_of_e = p; > -+ if ((UC('e') == *p) || (UC('E') == *p) || (UC('d') == *p) || > -+ (UC('D') == *p)) { > -+ ++p; > -+ } > -+ bool neg_exp = false; > -+ if ((p != pend) && (UC('-') == *p)) { > -+ neg_exp = true; > -+ ++p; > -+ } else if ((p != pend) && > -+ (UC('+') == > -+ *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1) > -+ ++p; > -+ } > -+ if ((p == pend) || !is_integer(*p)) { > -+ if (!(fmt & chars_format::fixed)) { > -+ // The exponential part is invalid for scientific notation, so it must > -+ // be a trailing token for fixed notation. However, fixed notation is > -+ // disabled, so report a scientific notation error. > -+ return report_parse_error<UC>(p, parse_error::missing_exponential_part); > -+ } > -+ // Otherwise, we will be ignoring the 'e'. > -+ p = location_of_e; > -+ } else { > -+ while ((p != pend) && is_integer(*p)) { > -+ uint8_t digit = uint8_t(*p - UC('0')); > -+ if (exp_number < 0x10000000) { > -+ exp_number = 10 * exp_number + digit; > -+ } > -+ ++p; > -+ } > -+ if (neg_exp) { > -+ exp_number = -exp_number; > -+ } > -+ exponent += exp_number; > -+ } > -+ } else { > -+ // If it scientific and not fixed, we have to bail out. > -+ if ((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { > -+ return report_parse_error<UC>(p, parse_error::missing_exponential_part); > -+ } > -+ } > -+ answer.lastmatch = p; > -+ answer.valid = true; > -+ > -+ // If we frequently had to deal with long strings of digits, > -+ // we could extend our code by using a 128-bit integer instead > -+ // of a 64-bit integer. However, this is uncommon. > -+ // > -+ // We can deal with up to 19 digits. > -+ if (digit_count > 19) { // this is uncommon > -+ // It is possible that the integer had an overflow. > -+ // We have to handle the case where we have 0.0000somenumber. > -+ // We need to be mindful of the case where we only have zeroes... > -+ // E.g., 0.000000000...000. > -+ UC const *start = start_digits; > -+ while ((start != pend) && (*start == UC('0') || *start == decimal_point)) { > -+ if (*start == UC('0')) { > -+ digit_count--; > -+ } > -+ start++; > -+ } > -+ > -+ if (digit_count > 19) { > -+ answer.too_many_digits = true; > -+ // Let us start again, this time, avoiding overflows. > -+ // We don't need to check if is_integer, since we use the > -+ // pre-tokenized spans from above. > -+ i = 0; > -+ p = answer.integer.ptr; > -+ UC const *int_end = p + answer.integer.len(); > -+ const uint64_t minimal_nineteen_digit_integer{1000000000000000000}; > -+ while ((i < minimal_nineteen_digit_integer) && (p != int_end)) { > -+ i = i * 10 + uint64_t(*p - UC('0')); > -+ ++p; > -+ } > -+ if (i >= minimal_nineteen_digit_integer) { // We have a big integers > -+ exponent = end_of_integer_part - p + exp_number; > -+ } else { // We have a value with a fractional component. > -+ p = answer.fraction.ptr; > -+ UC const *frac_end = p + answer.fraction.len(); > -+ while ((i < minimal_nineteen_digit_integer) && (p != frac_end)) { > -+ i = i * 10 + uint64_t(*p - UC('0')); > -+ ++p; > -+ } > -+ exponent = answer.fraction.ptr - p + exp_number; > -+ } > -+ // We have now corrected both exponent and i, to a truncated value > -+ } > -+ } > -+ answer.exponent = exponent; > -+ answer.mantissa = i; > -+ return answer; > -+} > -+ > -+template <typename T, typename UC> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> > -+parse_int_string(UC const *p, UC const *pend, T &value, int base) { > -+ from_chars_result_t<UC> answer; > -+ > -+ UC const *const first = p; > -+ > -+ bool negative = (*p == UC('-')); > -+ if (!std::is_signed<T>::value && negative) { > -+ answer.ec = std::errc::invalid_argument; > -+ answer.ptr = first; > -+ return answer; > -+ } > -+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default > -+ if ((*p == UC('-')) || (*p == UC('+'))) { > -+#else > -+ if (*p == UC('-')) { > -+#endif > -+ ++p; > -+ } > -+ > -+ UC const *const start_num = p; > -+ > -+ while (p != pend && *p == UC('0')) { > -+ ++p; > -+ } > -+ > -+ const bool has_leading_zeros = p > start_num; > -+ > -+ UC const *const start_digits = p; > -+ > -+ uint64_t i = 0; > -+ if (base == 10) { > -+ loop_parse_if_eight_digits(p, pend, i); // use SIMD if possible > -+ } > -+ while (p != pend) { > -+ uint8_t digit = ch_to_digit(*p); > -+ if (digit >= base) { > -+ break; > -+ } > -+ i = uint64_t(base) * i + digit; // might overflow, check this later > -+ p++; > -+ } > -+ > -+ size_t digit_count = size_t(p - start_digits); > -+ > -+ if (digit_count == 0) { > -+ if (has_leading_zeros) { > -+ value = 0; > -+ answer.ec = std::errc(); > -+ answer.ptr = p; > -+ } else { > -+ answer.ec = std::errc::invalid_argument; > -+ answer.ptr = first; > -+ } > -+ return answer; > -+ } > -+ > -+ answer.ptr = p; > -+ > -+ // check u64 overflow > -+ size_t max_digits = max_digits_u64(base); > -+ if (digit_count > max_digits) { > -+ answer.ec = std::errc::result_out_of_range; > -+ return answer; > -+ } > -+ // this check can be eliminated for all other types, but they will all require > -+ // a max_digits(base) equivalent > -+ if (digit_count == max_digits && i < min_safe_u64(base)) { > -+ answer.ec = std::errc::result_out_of_range; > -+ return answer; > -+ } > -+ > -+ // check other types overflow > -+ if (!std::is_same<T, uint64_t>::value) { > -+ if (i > uint64_t(std::numeric_limits<T>::max()) + uint64_t(negative)) { > -+ answer.ec = std::errc::result_out_of_range; > -+ return answer; > -+ } > -+ } > -+ > -+ if (negative) { > -+#ifdef FASTFLOAT_VISUAL_STUDIO > -+#pragma warning(push) > -+#pragma warning(disable : 4146) > -+#endif > -+ // this weird workaround is required because: > -+ // - converting unsigned to signed when its value is greater than signed max > -+ // is UB pre-C++23. > -+ // - reinterpret_casting (~i + 1) would work, but it is not constexpr > -+ // this is always optimized into a neg instruction (note: T is an integer > -+ // type) > -+ value = T(-std::numeric_limits<T>::max() - > -+ T(i - uint64_t(std::numeric_limits<T>::max()))); > -+#ifdef FASTFLOAT_VISUAL_STUDIO > -+#pragma warning(pop) > -+#endif > -+ } else { > -+ value = T(i); > -+ } > -+ > -+ answer.ec = std::errc(); > -+ return answer; > -+} > -+ > -+} // namespace fast_float > -+ > -+#endif > -+ > -+#ifndef FASTFLOAT_FAST_TABLE_H > -+#define FASTFLOAT_FAST_TABLE_H > -+ > -+#include <cstdint> > -+ > -+namespace fast_float { > -+ > -+/** > -+ * When mapping numbers from decimal to binary, > -+ * we go from w * 10^q to m * 2^p but we have > -+ * 10^q = 5^q * 2^q, so effectively > -+ * we are trying to match > -+ * w * 2^q * 5^q to m * 2^p. Thus the powers of two > -+ * are not a concern since they can be represented > -+ * exactly using the binary notation, only the powers of five > -+ * affect the binary significand. > -+ */ > -+ > -+/** > -+ * The smallest non-zero float (binary64) is 2^-1074. > -+ * We take as input numbers of the form w x 10^q where w < 2^64. > -+ * We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076. > -+ * However, we have that > -+ * (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^-1074. > -+ * Thus it is possible for a number of the form w * 10^-342 where > -+ * w is a 64-bit value to be a non-zero floating-point number. > -+ ********* > -+ * Any number of form w * 10^309 where w>= 1 is going to be > -+ * infinite in binary64 so we never need to worry about powers > -+ * of 5 greater than 308. > -+ */ > -+template <class unused = void> struct powers_template { > -+ > -+ constexpr static int smallest_power_of_five = > -+ binary_format<double>::smallest_power_of_ten(); > -+ constexpr static int largest_power_of_five = > -+ binary_format<double>::largest_power_of_ten(); > -+ constexpr static int number_of_entries = > -+ 2 * (largest_power_of_five - smallest_power_of_five + 1); > -+ // Powers of five from 5^-342 all the way to 5^308 rounded toward one. > -+ constexpr static uint64_t power_of_five_128[number_of_entries] = { > -+ 0xeef453d6923bd65a, 0x113faa2906a13b3f, > -+ 0x9558b4661b6565f8, 0x4ac7ca59a424c507, > -+ 0xbaaee17fa23ebf76, 0x5d79bcf00d2df649, > -+ 0xe95a99df8ace6f53, 0xf4d82c2c107973dc, > -+ 0x91d8a02bb6c10594, 0x79071b9b8a4be869, > -+ 0xb64ec836a47146f9, 0x9748e2826cdee284, > -+ 0xe3e27a444d8d98b7, 0xfd1b1b2308169b25, > -+ 0x8e6d8c6ab0787f72, 0xfe30f0f5e50e20f7, > -+ 0xb208ef855c969f4f, 0xbdbd2d335e51a935, > -+ 0xde8b2b66b3bc4723, 0xad2c788035e61382, > -+ 0x8b16fb203055ac76, 0x4c3bcb5021afcc31, > -+ 0xaddcb9e83c6b1793, 0xdf4abe242a1bbf3d, > -+ 0xd953e8624b85dd78, 0xd71d6dad34a2af0d, > -+ 0x87d4713d6f33aa6b, 0x8672648c40e5ad68, > -+ 0xa9c98d8ccb009506, 0x680efdaf511f18c2, > -+ 0xd43bf0effdc0ba48, 0x212bd1b2566def2, > -+ 0x84a57695fe98746d, 0x14bb630f7604b57, > -+ 0xa5ced43b7e3e9188, 0x419ea3bd35385e2d, > -+ 0xcf42894a5dce35ea, 0x52064cac828675b9, > -+ 0x818995ce7aa0e1b2, 0x7343efebd1940993, > -+ 0xa1ebfb4219491a1f, 0x1014ebe6c5f90bf8, > -+ 0xca66fa129f9b60a6, 0xd41a26e077774ef6, > -+ 0xfd00b897478238d0, 0x8920b098955522b4, > -+ 0x9e20735e8cb16382, 0x55b46e5f5d5535b0, > -+ 0xc5a890362fddbc62, 0xeb2189f734aa831d, > -+ 0xf712b443bbd52b7b, 0xa5e9ec7501d523e4, > -+ 0x9a6bb0aa55653b2d, 0x47b233c92125366e, > -+ 0xc1069cd4eabe89f8, 0x999ec0bb696e840a, > -+ 0xf148440a256e2c76, 0xc00670ea43ca250d, > -+ 0x96cd2a865764dbca, 0x380406926a5e5728, > -+ 0xbc807527ed3e12bc, 0xc605083704f5ecf2, > -+ 0xeba09271e88d976b, 0xf7864a44c633682e, > -+ 0x93445b8731587ea3, 0x7ab3ee6afbe0211d, > -+ 0xb8157268fdae9e4c, 0x5960ea05bad82964, > -+ 0xe61acf033d1a45df, 0x6fb92487298e33bd, > -+ 0x8fd0c16206306bab, 0xa5d3b6d479f8e056, > -+ 0xb3c4f1ba87bc8696, 0x8f48a4899877186c, > -+ 0xe0b62e2929aba83c, 0x331acdabfe94de87, > -+ 0x8c71dcd9ba0b4925, 0x9ff0c08b7f1d0b14, > -+ 0xaf8e5410288e1b6f, 0x7ecf0ae5ee44dd9, > -+ 0xdb71e91432b1a24a, 0xc9e82cd9f69d6150, > -+ 0x892731ac9faf056e, 0xbe311c083a225cd2, > -+ 0xab70fe17c79ac6ca, 0x6dbd630a48aaf406, > -+ 0xd64d3d9db981787d, 0x92cbbccdad5b108, > -+ 0x85f0468293f0eb4e, 0x25bbf56008c58ea5, > -+ 0xa76c582338ed2621, 0xaf2af2b80af6f24e, > -+ 0xd1476e2c07286faa, 0x1af5af660db4aee1, > -+ 0x82cca4db847945ca, 0x50d98d9fc890ed4d, > -+ 0xa37fce126597973c, 0xe50ff107bab528a0, > -+ 0xcc5fc196fefd7d0c, 0x1e53ed49a96272c8, > -+ 0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7a, > -+ 0x9faacf3df73609b1, 0x77b191618c54e9ac, > -+ 0xc795830d75038c1d, 0xd59df5b9ef6a2417, > -+ 0xf97ae3d0d2446f25, 0x4b0573286b44ad1d, > -+ 0x9becce62836ac577, 0x4ee367f9430aec32, > -+ 0xc2e801fb244576d5, 0x229c41f793cda73f, > -+ 0xf3a20279ed56d48a, 0x6b43527578c1110f, > -+ 0x9845418c345644d6, 0x830a13896b78aaa9, > -+ 0xbe5691ef416bd60c, 0x23cc986bc656d553, > -+ 0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa8, > -+ 0x94b3a202eb1c3f39, 0x7bf7d71432f3d6a9, > -+ 0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc53, > -+ 0xe858ad248f5c22c9, 0xd1b3400f8f9cff68, > -+ 0x91376c36d99995be, 0x23100809b9c21fa1, > -+ 0xb58547448ffffb2d, 0xabd40a0c2832a78a, > -+ 0xe2e69915b3fff9f9, 0x16c90c8f323f516c, > -+ 0x8dd01fad907ffc3b, 0xae3da7d97f6792e3, > -+ 0xb1442798f49ffb4a, 0x99cd11cfdf41779c, > -+ 0xdd95317f31c7fa1d, 0x40405643d711d583, > -+ 0x8a7d3eef7f1cfc52, 0x482835ea666b2572, > -+ 0xad1c8eab5ee43b66, 0xda3243650005eecf, > -+ 0xd863b256369d4a40, 0x90bed43e40076a82, > -+ 0x873e4f75e2224e68, 0x5a7744a6e804a291, > -+ 0xa90de3535aaae202, 0x711515d0a205cb36, > -+ 0xd3515c2831559a83, 0xd5a5b44ca873e03, > -+ 0x8412d9991ed58091, 0xe858790afe9486c2, > -+ 0xa5178fff668ae0b6, 0x626e974dbe39a872, > -+ 0xce5d73ff402d98e3, 0xfb0a3d212dc8128f, > -+ 0x80fa687f881c7f8e, 0x7ce66634bc9d0b99, > -+ 0xa139029f6a239f72, 0x1c1fffc1ebc44e80, > -+ 0xc987434744ac874e, 0xa327ffb266b56220, > -+ 0xfbe9141915d7a922, 0x4bf1ff9f0062baa8, > -+ 0x9d71ac8fada6c9b5, 0x6f773fc3603db4a9, > -+ 0xc4ce17b399107c22, 0xcb550fb4384d21d3, > -+ 0xf6019da07f549b2b, 0x7e2a53a146606a48, > -+ 0x99c102844f94e0fb, 0x2eda7444cbfc426d, > -+ 0xc0314325637a1939, 0xfa911155fefb5308, > -+ 0xf03d93eebc589f88, 0x793555ab7eba27ca, > -+ 0x96267c7535b763b5, 0x4bc1558b2f3458de, > -+ 0xbbb01b9283253ca2, 0x9eb1aaedfb016f16, > -+ 0xea9c227723ee8bcb, 0x465e15a979c1cadc, > -+ 0x92a1958a7675175f, 0xbfacd89ec191ec9, > -+ 0xb749faed14125d36, 0xcef980ec671f667b, > -+ 0xe51c79a85916f484, 0x82b7e12780e7401a, > -+ 0x8f31cc0937ae58d2, 0xd1b2ecb8b0908810, > -+ 0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa15, > -+ 0xdfbdcece67006ac9, 0x67a791e093e1d49a, > -+ 0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e0, > -+ 0xaecc49914078536d, 0x58fae9f773886e18, > -+ 0xda7f5bf590966848, 0xaf39a475506a899e, > -+ 0x888f99797a5e012d, 0x6d8406c952429603, > -+ 0xaab37fd7d8f58178, 0xc8e5087ba6d33b83, > -+ 0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a64, > -+ 0x855c3be0a17fcd26, 0x5cf2eea09a55067f, > -+ 0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481e, > -+ 0xd0601d8efc57b08b, 0xf13b94daf124da26, > -+ 0x823c12795db6ce57, 0x76c53d08d6b70858, > -+ 0xa2cb1717b52481ed, 0x54768c4b0c64ca6e, > -+ 0xcb7ddcdda26da268, 0xa9942f5dcf7dfd09, > -+ 0xfe5d54150b090b02, 0xd3f93b35435d7c4c, > -+ 0x9efa548d26e5a6e1, 0xc47bc5014a1a6daf, > -+ 0xc6b8e9b0709f109a, 0x359ab6419ca1091b, > -+ 0xf867241c8cc6d4c0, 0xc30163d203c94b62, > -+ 0x9b407691d7fc44f8, 0x79e0de63425dcf1d, > -+ 0xc21094364dfb5636, 0x985915fc12f542e4, > -+ 0xf294b943e17a2bc4, 0x3e6f5b7b17b2939d, > -+ 0x979cf3ca6cec5b5a, 0xa705992ceecf9c42, > -+ 0xbd8430bd08277231, 0x50c6ff782a838353, > -+ 0xece53cec4a314ebd, 0xa4f8bf5635246428, > -+ 0x940f4613ae5ed136, 0x871b7795e136be99, > -+ 0xb913179899f68584, 0x28e2557b59846e3f, > -+ 0xe757dd7ec07426e5, 0x331aeada2fe589cf, > -+ 0x9096ea6f3848984f, 0x3ff0d2c85def7621, > -+ 0xb4bca50b065abe63, 0xfed077a756b53a9, > -+ 0xe1ebce4dc7f16dfb, 0xd3e8495912c62894, > -+ 0x8d3360f09cf6e4bd, 0x64712dd7abbbd95c, > -+ 0xb080392cc4349dec, 0xbd8d794d96aacfb3, > -+ 0xdca04777f541c567, 0xecf0d7a0fc5583a0, > -+ 0x89e42caaf9491b60, 0xf41686c49db57244, > -+ 0xac5d37d5b79b6239, 0x311c2875c522ced5, > -+ 0xd77485cb25823ac7, 0x7d633293366b828b, > -+ 0x86a8d39ef77164bc, 0xae5dff9c02033197, > -+ 0xa8530886b54dbdeb, 0xd9f57f830283fdfc, > -+ 0xd267caa862a12d66, 0xd072df63c324fd7b, > -+ 0x8380dea93da4bc60, 0x4247cb9e59f71e6d, > -+ 0xa46116538d0deb78, 0x52d9be85f074e608, > -+ 0xcd795be870516656, 0x67902e276c921f8b, > -+ 0x806bd9714632dff6, 0xba1cd8a3db53b6, > -+ 0xa086cfcd97bf97f3, 0x80e8a40eccd228a4, > -+ 0xc8a883c0fdaf7df0, 0x6122cd128006b2cd, > -+ 0xfad2a4b13d1b5d6c, 0x796b805720085f81, > -+ 0x9cc3a6eec6311a63, 0xcbe3303674053bb0, > -+ 0xc3f490aa77bd60fc, 0xbedbfc4411068a9c, > -+ 0xf4f1b4d515acb93b, 0xee92fb5515482d44, > -+ 0x991711052d8bf3c5, 0x751bdd152d4d1c4a, > -+ 0xbf5cd54678eef0b6, 0xd262d45a78a0635d, > -+ 0xef340a98172aace4, 0x86fb897116c87c34, > -+ 0x9580869f0e7aac0e, 0xd45d35e6ae3d4da0, > -+ 0xbae0a846d2195712, 0x8974836059cca109, > -+ 0xe998d258869facd7, 0x2bd1a438703fc94b, > -+ 0x91ff83775423cc06, 0x7b6306a34627ddcf, > -+ 0xb67f6455292cbf08, 0x1a3bc84c17b1d542, > -+ 0xe41f3d6a7377eeca, 0x20caba5f1d9e4a93, > -+ 0x8e938662882af53e, 0x547eb47b7282ee9c, > -+ 0xb23867fb2a35b28d, 0xe99e619a4f23aa43, > -+ 0xdec681f9f4c31f31, 0x6405fa00e2ec94d4, > -+ 0x8b3c113c38f9f37e, 0xde83bc408dd3dd04, > -+ 0xae0b158b4738705e, 0x9624ab50b148d445, > -+ 0xd98ddaee19068c76, 0x3badd624dd9b0957, > -+ 0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d6, > -+ 0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4c, > -+ 0xd47487cc8470652b, 0x7647c3200069671f, > -+ 0x84c8d4dfd2c63f3b, 0x29ecd9f40041e073, > -+ 0xa5fb0a17c777cf09, 0xf468107100525890, > -+ 0xcf79cc9db955c2cc, 0x7182148d4066eeb4, > -+ 0x81ac1fe293d599bf, 0xc6f14cd848405530, > -+ 0xa21727db38cb002f, 0xb8ada00e5a506a7c, > -+ 0xca9cf1d206fdc03b, 0xa6d90811f0e4851c, > -+ 0xfd442e4688bd304a, 0x908f4a166d1da663, > -+ 0x9e4a9cec15763e2e, 0x9a598e4e043287fe, > -+ 0xc5dd44271ad3cdba, 0x40eff1e1853f29fd, > -+ 0xf7549530e188c128, 0xd12bee59e68ef47c, > -+ 0x9a94dd3e8cf578b9, 0x82bb74f8301958ce, > -+ 0xc13a148e3032d6e7, 0xe36a52363c1faf01, > -+ 0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac1, > -+ 0x96f5600f15a7b7e5, 0x29ab103a5ef8c0b9, > -+ 0xbcb2b812db11a5de, 0x7415d448f6b6f0e7, > -+ 0xebdf661791d60f56, 0x111b495b3464ad21, > -+ 0x936b9fcebb25c995, 0xcab10dd900beec34, > -+ 0xb84687c269ef3bfb, 0x3d5d514f40eea742, > -+ 0xe65829b3046b0afa, 0xcb4a5a3112a5112, > -+ 0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ab, > -+ 0xb3f4e093db73a093, 0x59ed216765690f56, > -+ 0xe0f218b8d25088b8, 0x306869c13ec3532c, > -+ 0x8c974f7383725573, 0x1e414218c73a13fb, > -+ 0xafbd2350644eeacf, 0xe5d1929ef90898fa, > -+ 0xdbac6c247d62a583, 0xdf45f746b74abf39, > -+ 0x894bc396ce5da772, 0x6b8bba8c328eb783, > -+ 0xab9eb47c81f5114f, 0x66ea92f3f326564, > -+ 0xd686619ba27255a2, 0xc80a537b0efefebd, > -+ 0x8613fd0145877585, 0xbd06742ce95f5f36, > -+ 0xa798fc4196e952e7, 0x2c48113823b73704, > -+ 0xd17f3b51fca3a7a0, 0xf75a15862ca504c5, > -+ 0x82ef85133de648c4, 0x9a984d73dbe722fb, > -+ 0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebba, > -+ 0xcc963fee10b7d1b3, 0x318df905079926a8, > -+ 0xffbbcfe994e5c61f, 0xfdf17746497f7052, > -+ 0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa633, > -+ 0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc0, > -+ 0xf9bd690a1b68637b, 0x3dfdce7aa3c673b0, > -+ 0x9c1661a651213e2d, 0x6bea10ca65c084e, > -+ 0xc31bfa0fe5698db8, 0x486e494fcff30a62, > -+ 0xf3e2f893dec3f126, 0x5a89dba3c3efccfa, > -+ 0x986ddb5c6b3a76b7, 0xf89629465a75e01c, > -+ 0xbe89523386091465, 0xf6bbb397f1135823, > -+ 0xee2ba6c0678b597f, 0x746aa07ded582e2c, > -+ 0x94db483840b717ef, 0xa8c2a44eb4571cdc, > -+ 0xba121a4650e4ddeb, 0x92f34d62616ce413, > -+ 0xe896a0d7e51e1566, 0x77b020baf9c81d17, > -+ 0x915e2486ef32cd60, 0xace1474dc1d122e, > -+ 0xb5b5ada8aaff80b8, 0xd819992132456ba, > -+ 0xe3231912d5bf60e6, 0x10e1fff697ed6c69, > -+ 0x8df5efabc5979c8f, 0xca8d3ffa1ef463c1, > -+ 0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb2, > -+ 0xddd0467c64bce4a0, 0xac7cb3f6d05ddbde, > -+ 0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96b, > -+ 0xad4ab7112eb3929d, 0x86c16c98d2c953c6, > -+ 0xd89d64d57a607744, 0xe871c7bf077ba8b7, > -+ 0x87625f056c7c4a8b, 0x11471cd764ad4972, > -+ 0xa93af6c6c79b5d2d, 0xd598e40d3dd89bcf, > -+ 0xd389b47879823479, 0x4aff1d108d4ec2c3, > -+ 0x843610cb4bf160cb, 0xcedf722a585139ba, > -+ 0xa54394fe1eedb8fe, 0xc2974eb4ee658828, > -+ 0xce947a3da6a9273e, 0x733d226229feea32, > -+ 0x811ccc668829b887, 0x806357d5a3f525f, > -+ 0xa163ff802a3426a8, 0xca07c2dcb0cf26f7, > -+ 0xc9bcff6034c13052, 0xfc89b393dd02f0b5, > -+ 0xfc2c3f3841f17c67, 0xbbac2078d443ace2, > -+ 0x9d9ba7832936edc0, 0xd54b944b84aa4c0d, > -+ 0xc5029163f384a931, 0xa9e795e65d4df11, > -+ 0xf64335bcf065d37d, 0x4d4617b5ff4a16d5, > -+ 0x99ea0196163fa42e, 0x504bced1bf8e4e45, > -+ 0xc06481fb9bcf8d39, 0xe45ec2862f71e1d6, > -+ 0xf07da27a82c37088, 0x5d767327bb4e5a4c, > -+ 0x964e858c91ba2655, 0x3a6a07f8d510f86f, > -+ 0xbbe226efb628afea, 0x890489f70a55368b, > -+ 0xeadab0aba3b2dbe5, 0x2b45ac74ccea842e, > -+ 0x92c8ae6b464fc96f, 0x3b0b8bc90012929d, > -+ 0xb77ada0617e3bbcb, 0x9ce6ebb40173744, > -+ 0xe55990879ddcaabd, 0xcc420a6a101d0515, > -+ 0x8f57fa54c2a9eab6, 0x9fa946824a12232d, > -+ 0xb32df8e9f3546564, 0x47939822dc96abf9, > -+ 0xdff9772470297ebd, 0x59787e2b93bc56f7, > -+ 0x8bfbea76c619ef36, 0x57eb4edb3c55b65a, > -+ 0xaefae51477a06b03, 0xede622920b6b23f1, > -+ 0xdab99e59958885c4, 0xe95fab368e45eced, > -+ 0x88b402f7fd75539b, 0x11dbcb0218ebb414, > -+ 0xaae103b5fcd2a881, 0xd652bdc29f26a119, > -+ 0xd59944a37c0752a2, 0x4be76d3346f0495f, > -+ 0x857fcae62d8493a5, 0x6f70a4400c562ddb, > -+ 0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb952, > -+ 0xd097ad07a71f26b2, 0x7e2000a41346a7a7, > -+ 0x825ecc24c873782f, 0x8ed400668c0c28c8, > -+ 0xa2f67f2dfa90563b, 0x728900802f0f32fa, > -+ 0xcbb41ef979346bca, 0x4f2b40a03ad2ffb9, > -+ 0xfea126b7d78186bc, 0xe2f610c84987bfa8, > -+ 0x9f24b832e6b0f436, 0xdd9ca7d2df4d7c9, > -+ 0xc6ede63fa05d3143, 0x91503d1c79720dbb, > -+ 0xf8a95fcf88747d94, 0x75a44c6397ce912a, > -+ 0x9b69dbe1b548ce7c, 0xc986afbe3ee11aba, > -+ 0xc24452da229b021b, 0xfbe85badce996168, > -+ 0xf2d56790ab41c2a2, 0xfae27299423fb9c3, > -+ 0x97c560ba6b0919a5, 0xdccd879fc967d41a, > -+ 0xbdb6b8e905cb600f, 0x5400e987bbc1c920, > -+ 0xed246723473e3813, 0x290123e9aab23b68, > -+ 0x9436c0760c86e30b, 0xf9a0b6720aaf6521, > -+ 0xb94470938fa89bce, 0xf808e40e8d5b3e69, > -+ 0xe7958cb87392c2c2, 0xb60b1d1230b20e04, > -+ 0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c2, > -+ 0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af3, > -+ 0xe2280b6c20dd5232, 0x25c6da63c38de1b0, > -+ 0x8d590723948a535f, 0x579c487e5a38ad0e, > -+ 0xb0af48ec79ace837, 0x2d835a9df0c6d851, > -+ 0xdcdb1b2798182244, 0xf8e431456cf88e65, > -+ 0x8a08f0f8bf0f156b, 0x1b8e9ecb641b58ff, > -+ 0xac8b2d36eed2dac5, 0xe272467e3d222f3f, > -+ 0xd7adf884aa879177, 0x5b0ed81dcc6abb0f, > -+ 0x86ccbb52ea94baea, 0x98e947129fc2b4e9, > -+ 0xa87fea27a539e9a5, 0x3f2398d747b36224, > -+ 0xd29fe4b18e88640e, 0x8eec7f0d19a03aad, > -+ 0x83a3eeeef9153e89, 0x1953cf68300424ac, > -+ 0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd7, > -+ 0xcdb02555653131b6, 0x3792f412cb06794d, > -+ 0x808e17555f3ebf11, 0xe2bbd88bbee40bd0, > -+ 0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec4, > -+ 0xc8de047564d20a8b, 0xf245825a5a445275, > -+ 0xfb158592be068d2e, 0xeed6e2f0f0d56712, > -+ 0x9ced737bb6c4183d, 0x55464dd69685606b, > -+ 0xc428d05aa4751e4c, 0xaa97e14c3c26b886, > -+ 0xf53304714d9265df, 0xd53dd99f4b3066a8, > -+ 0x993fe2c6d07b7fab, 0xe546a8038efe4029, > -+ 0xbf8fdb78849a5f96, 0xde98520472bdd033, > -+ 0xef73d256a5c0f77c, 0x963e66858f6d4440, > -+ 0x95a8637627989aad, 0xdde7001379a44aa8, > -+ 0xbb127c53b17ec159, 0x5560c018580d5d52, > -+ 0xe9d71b689dde71af, 0xaab8f01e6e10b4a6, > -+ 0x9226712162ab070d, 0xcab3961304ca70e8, > -+ 0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d22, > -+ 0xe45c10c42a2b3b05, 0x8cb89a7db77c506a, > -+ 0x8eb98a7a9a5b04e3, 0x77f3608e92adb242, > -+ 0xb267ed1940f1c61c, 0x55f038b237591ed3, > -+ 0xdf01e85f912e37a3, 0x6b6c46dec52f6688, > -+ 0x8b61313bbabce2c6, 0x2323ac4b3b3da015, > -+ 0xae397d8aa96c1b77, 0xabec975e0a0d081a, > -+ 0xd9c7dced53c72255, 0x96e7bd358c904a21, > -+ 0x881cea14545c7575, 0x7e50d64177da2e54, > -+ 0xaa242499697392d2, 0xdde50bd1d5d0b9e9, > -+ 0xd4ad2dbfc3d07787, 0x955e4ec64b44e864, > -+ 0x84ec3c97da624ab4, 0xbd5af13bef0b113e, > -+ 0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58e, > -+ 0xcfb11ead453994ba, 0x67de18eda5814af2, > -+ 0x81ceb32c4b43fcf4, 0x80eacf948770ced7, > -+ 0xa2425ff75e14fc31, 0xa1258379a94d028d, > -+ 0xcad2f7f5359a3b3e, 0x96ee45813a04330, > -+ 0xfd87b5f28300ca0d, 0x8bca9d6e188853fc, > -+ 0x9e74d1b791e07e48, 0x775ea264cf55347e, > -+ 0xc612062576589dda, 0x95364afe032a819e, > -+ 0xf79687aed3eec551, 0x3a83ddbd83f52205, > -+ 0x9abe14cd44753b52, 0xc4926a9672793543, > -+ 0xc16d9a0095928a27, 0x75b7053c0f178294, > -+ 0xf1c90080baf72cb1, 0x5324c68b12dd6339, > -+ 0x971da05074da7bee, 0xd3f6fc16ebca5e04, > -+ 0xbce5086492111aea, 0x88f4bb1ca6bcf585, > -+ 0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6, > -+ 0x9392ee8e921d5d07, 0x3aff322e62439fd0, > -+ 0xb877aa3236a4b449, 0x9befeb9fad487c3, > -+ 0xe69594bec44de15b, 0x4c2ebe687989a9b4, > -+ 0x901d7cf73ab0acd9, 0xf9d37014bf60a11, > -+ 0xb424dc35095cd80f, 0x538484c19ef38c95, > -+ 0xe12e13424bb40e13, 0x2865a5f206b06fba, > -+ 0x8cbccc096f5088cb, 0xf93f87b7442e45d4, > -+ 0xafebff0bcb24aafe, 0xf78f69a51539d749, > -+ 0xdbe6fecebdedd5be, 0xb573440e5a884d1c, > -+ 0x89705f4136b4a597, 0x31680a88f8953031, > -+ 0xabcc77118461cefc, 0xfdc20d2b36ba7c3e, > -+ 0xd6bf94d5e57a42bc, 0x3d32907604691b4d, > -+ 0x8637bd05af6c69b5, 0xa63f9a49c2c1b110, > -+ 0xa7c5ac471b478423, 0xfcf80dc33721d54, > -+ 0xd1b71758e219652b, 0xd3c36113404ea4a9, > -+ 0x83126e978d4fdf3b, 0x645a1cac083126ea, > -+ 0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4, > -+ 0xcccccccccccccccc, 0xcccccccccccccccd, > -+ 0x8000000000000000, 0x0, > -+ 0xa000000000000000, 0x0, > -+ 0xc800000000000000, 0x0, > -+ 0xfa00000000000000, 0x0, > -+ 0x9c40000000000000, 0x0, > -+ 0xc350000000000000, 0x0, > -+ 0xf424000000000000, 0x0, > -+ 0x9896800000000000, 0x0, > -+ 0xbebc200000000000, 0x0, > -+ 0xee6b280000000000, 0x0, > -+ 0x9502f90000000000, 0x0, > -+ 0xba43b74000000000, 0x0, > -+ 0xe8d4a51000000000, 0x0, > -+ 0x9184e72a00000000, 0x0, > -+ 0xb5e620f480000000, 0x0, > -+ 0xe35fa931a0000000, 0x0, > -+ 0x8e1bc9bf04000000, 0x0, > -+ 0xb1a2bc2ec5000000, 0x0, > -+ 0xde0b6b3a76400000, 0x0, > -+ 0x8ac7230489e80000, 0x0, > -+ 0xad78ebc5ac620000, 0x0, > -+ 0xd8d726b7177a8000, 0x0, > -+ 0x878678326eac9000, 0x0, > -+ 0xa968163f0a57b400, 0x0, > -+ 0xd3c21bcecceda100, 0x0, > -+ 0x84595161401484a0, 0x0, > -+ 0xa56fa5b99019a5c8, 0x0, > -+ 0xcecb8f27f4200f3a, 0x0, > -+ 0x813f3978f8940984, 0x4000000000000000, > -+ 0xa18f07d736b90be5, 0x5000000000000000, > -+ 0xc9f2c9cd04674ede, 0xa400000000000000, > -+ 0xfc6f7c4045812296, 0x4d00000000000000, > -+ 0x9dc5ada82b70b59d, 0xf020000000000000, > -+ 0xc5371912364ce305, 0x6c28000000000000, > -+ 0xf684df56c3e01bc6, 0xc732000000000000, > -+ 0x9a130b963a6c115c, 0x3c7f400000000000, > -+ 0xc097ce7bc90715b3, 0x4b9f100000000000, > -+ 0xf0bdc21abb48db20, 0x1e86d40000000000, > -+ 0x96769950b50d88f4, 0x1314448000000000, > -+ 0xbc143fa4e250eb31, 0x17d955a000000000, > -+ 0xeb194f8e1ae525fd, 0x5dcfab0800000000, > -+ 0x92efd1b8d0cf37be, 0x5aa1cae500000000, > -+ 0xb7abc627050305ad, 0xf14a3d9e40000000, > -+ 0xe596b7b0c643c719, 0x6d9ccd05d0000000, > -+ 0x8f7e32ce7bea5c6f, 0xe4820023a2000000, > -+ 0xb35dbf821ae4f38b, 0xdda2802c8a800000, > -+ 0xe0352f62a19e306e, 0xd50b2037ad200000, > -+ 0x8c213d9da502de45, 0x4526f422cc340000, > -+ 0xaf298d050e4395d6, 0x9670b12b7f410000, > -+ 0xdaf3f04651d47b4c, 0x3c0cdd765f114000, > -+ 0x88d8762bf324cd0f, 0xa5880a69fb6ac800, > -+ 0xab0e93b6efee0053, 0x8eea0d047a457a00, > -+ 0xd5d238a4abe98068, 0x72a4904598d6d880, > -+ 0x85a36366eb71f041, 0x47a6da2b7f864750, > -+ 0xa70c3c40a64e6c51, 0x999090b65f67d924, > -+ 0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d, > -+ 0x82818f1281ed449f, 0xbff8f10e7a8921a4, > -+ 0xa321f2d7226895c7, 0xaff72d52192b6a0d, > -+ 0xcbea6f8ceb02bb39, 0x9bf4f8a69f764490, > -+ 0xfee50b7025c36a08, 0x2f236d04753d5b4, > -+ 0x9f4f2726179a2245, 0x1d762422c946590, > -+ 0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef5, > -+ 0xf8ebad2b84e0d58b, 0xd2e0898765a7deb2, > -+ 0x9b934c3b330c8577, 0x63cc55f49f88eb2f, > -+ 0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fb, > -+ 0xf316271c7fc3908a, 0x8bef464e3945ef7a, > -+ 0x97edd871cfda3a56, 0x97758bf0e3cbb5ac, > -+ 0xbde94e8e43d0c8ec, 0x3d52eeed1cbea317, > -+ 0xed63a231d4c4fb27, 0x4ca7aaa863ee4bdd, > -+ 0x945e455f24fb1cf8, 0x8fe8caa93e74ef6a, > -+ 0xb975d6b6ee39e436, 0xb3e2fd538e122b44, > -+ 0xe7d34c64a9c85d44, 0x60dbbca87196b616, > -+ 0x90e40fbeea1d3a4a, 0xbc8955e946fe31cd, > -+ 0xb51d13aea4a488dd, 0x6babab6398bdbe41, > -+ 0xe264589a4dcdab14, 0xc696963c7eed2dd1, > -+ 0x8d7eb76070a08aec, 0xfc1e1de5cf543ca2, > -+ 0xb0de65388cc8ada8, 0x3b25a55f43294bcb, > -+ 0xdd15fe86affad912, 0x49ef0eb713f39ebe, > -+ 0x8a2dbf142dfcc7ab, 0x6e3569326c784337, > -+ 0xacb92ed9397bf996, 0x49c2c37f07965404, > -+ 0xd7e77a8f87daf7fb, 0xdc33745ec97be906, > -+ 0x86f0ac99b4e8dafd, 0x69a028bb3ded71a3, > -+ 0xa8acd7c0222311bc, 0xc40832ea0d68ce0c, > -+ 0xd2d80db02aabd62b, 0xf50a3fa490c30190, > -+ 0x83c7088e1aab65db, 0x792667c6da79e0fa, > -+ 0xa4b8cab1a1563f52, 0x577001b891185938, > -+ 0xcde6fd5e09abcf26, 0xed4c0226b55e6f86, > -+ 0x80b05e5ac60b6178, 0x544f8158315b05b4, > -+ 0xa0dc75f1778e39d6, 0x696361ae3db1c721, > -+ 0xc913936dd571c84c, 0x3bc3a19cd1e38e9, > -+ 0xfb5878494ace3a5f, 0x4ab48a04065c723, > -+ 0x9d174b2dcec0e47b, 0x62eb0d64283f9c76, > -+ 0xc45d1df942711d9a, 0x3ba5d0bd324f8394, > -+ 0xf5746577930d6500, 0xca8f44ec7ee36479, > -+ 0x9968bf6abbe85f20, 0x7e998b13cf4e1ecb, > -+ 0xbfc2ef456ae276e8, 0x9e3fedd8c321a67e, > -+ 0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101e, > -+ 0x95d04aee3b80ece5, 0xbba1f1d158724a12, > -+ 0xbb445da9ca61281f, 0x2a8a6e45ae8edc97, > -+ 0xea1575143cf97226, 0xf52d09d71a3293bd, > -+ 0x924d692ca61be758, 0x593c2626705f9c56, > -+ 0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836c, > -+ 0xe498f455c38b997a, 0xb6dfb9c0f956447, > -+ 0x8edf98b59a373fec, 0x4724bd4189bd5eac, > -+ 0xb2977ee300c50fe7, 0x58edec91ec2cb657, > -+ 0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ed, > -+ 0x8b865b215899f46c, 0xbd79e0d20082ee74, > -+ 0xae67f1e9aec07187, 0xecd8590680a3aa11, > -+ 0xda01ee641a708de9, 0xe80e6f4820cc9495, > -+ 0x884134fe908658b2, 0x3109058d147fdcdd, > -+ 0xaa51823e34a7eede, 0xbd4b46f0599fd415, > -+ 0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91a, > -+ 0x850fadc09923329e, 0x3e2cf6bc604ddb0, > -+ 0xa6539930bf6bff45, 0x84db8346b786151c, > -+ 0xcfe87f7cef46ff16, 0xe612641865679a63, > -+ 0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07e, > -+ 0xa26da3999aef7749, 0xe3be5e330f38f09d, > -+ 0xcb090c8001ab551c, 0x5cadf5bfd3072cc5, > -+ 0xfdcb4fa002162a63, 0x73d9732fc7c8f7f6, > -+ 0x9e9f11c4014dda7e, 0x2867e7fddcdd9afa, > -+ 0xc646d63501a1511d, 0xb281e1fd541501b8, > -+ 0xf7d88bc24209a565, 0x1f225a7ca91a4226, > -+ 0x9ae757596946075f, 0x3375788de9b06958, > -+ 0xc1a12d2fc3978937, 0x52d6b1641c83ae, > -+ 0xf209787bb47d6b84, 0xc0678c5dbd23a49a, > -+ 0x9745eb4d50ce6332, 0xf840b7ba963646e0, > -+ 0xbd176620a501fbff, 0xb650e5a93bc3d898, > -+ 0xec5d3fa8ce427aff, 0xa3e51f138ab4cebe, > -+ 0x93ba47c980e98cdf, 0xc66f336c36b10137, > -+ 0xb8a8d9bbe123f017, 0xb80b0047445d4184, > -+ 0xe6d3102ad96cec1d, 0xa60dc059157491e5, > -+ 0x9043ea1ac7e41392, 0x87c89837ad68db2f, > -+ 0xb454e4a179dd1877, 0x29babe4598c311fb, > -+ 0xe16a1dc9d8545e94, 0xf4296dd6fef3d67a, > -+ 0x8ce2529e2734bb1d, 0x1899e4a65f58660c, > -+ 0xb01ae745b101e9e4, 0x5ec05dcff72e7f8f, > -+ 0xdc21a1171d42645d, 0x76707543f4fa1f73, > -+ 0x899504ae72497eba, 0x6a06494a791c53a8, > -+ 0xabfa45da0edbde69, 0x487db9d17636892, > -+ 0xd6f8d7509292d603, 0x45a9d2845d3c42b6, > -+ 0x865b86925b9bc5c2, 0xb8a2392ba45a9b2, > -+ 0xa7f26836f282b732, 0x8e6cac7768d7141e, > -+ 0xd1ef0244af2364ff, 0x3207d795430cd926, > -+ 0x8335616aed761f1f, 0x7f44e6bd49e807b8, > -+ 0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a6, > -+ 0xcd036837130890a1, 0x36dba887c37a8c0f, > -+ 0x802221226be55a64, 0xc2494954da2c9789, > -+ 0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6c, > -+ 0xc83553c5c8965d3d, 0x6f92829494e5acc7, > -+ 0xfa42a8b73abbf48c, 0xcb772339ba1f17f9, > -+ 0x9c69a97284b578d7, 0xff2a760414536efb, > -+ 0xc38413cf25e2d70d, 0xfef5138519684aba, > -+ 0xf46518c2ef5b8cd1, 0x7eb258665fc25d69, > -+ 0x98bf2f79d5993802, 0xef2f773ffbd97a61, > -+ 0xbeeefb584aff8603, 0xaafb550ffacfd8fa, > -+ 0xeeaaba2e5dbf6784, 0x95ba2a53f983cf38, > -+ 0x952ab45cfa97a0b2, 0xdd945a747bf26183, > -+ 0xba756174393d88df, 0x94f971119aeef9e4, > -+ 0xe912b9d1478ceb17, 0x7a37cd5601aab85d, > -+ 0x91abb422ccb812ee, 0xac62e055c10ab33a, > -+ 0xb616a12b7fe617aa, 0x577b986b314d6009, > -+ 0xe39c49765fdf9d94, 0xed5a7e85fda0b80b, > -+ 0x8e41ade9fbebc27d, 0x14588f13be847307, > -+ 0xb1d219647ae6b31c, 0x596eb2d8ae258fc8, > -+ 0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bb, > -+ 0x8aec23d680043bee, 0x25de7bb9480d5854, > -+ 0xada72ccc20054ae9, 0xaf561aa79a10ae6a, > -+ 0xd910f7ff28069da4, 0x1b2ba1518094da04, > -+ 0x87aa9aff79042286, 0x90fb44d2f05d0842, > -+ 0xa99541bf57452b28, 0x353a1607ac744a53, > -+ 0xd3fa922f2d1675f2, 0x42889b8997915ce8, > -+ 0x847c9b5d7c2e09b7, 0x69956135febada11, > -+ 0xa59bc234db398c25, 0x43fab9837e699095, > -+ 0xcf02b2c21207ef2e, 0x94f967e45e03f4bb, > -+ 0x8161afb94b44f57d, 0x1d1be0eebac278f5, > -+ 0xa1ba1ba79e1632dc, 0x6462d92a69731732, > -+ 0xca28a291859bbf93, 0x7d7b8f7503cfdcfe, > -+ 0xfcb2cb35e702af78, 0x5cda735244c3d43e, > -+ 0x9defbf01b061adab, 0x3a0888136afa64a7, > -+ 0xc56baec21c7a1916, 0x88aaa1845b8fdd0, > -+ 0xf6c69a72a3989f5b, 0x8aad549e57273d45, > -+ 0x9a3c2087a63f6399, 0x36ac54e2f678864b, > -+ 0xc0cb28a98fcf3c7f, 0x84576a1bb416a7dd, > -+ 0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d5, > -+ 0x969eb7c47859e743, 0x9f644ae5a4b1b325, > -+ 0xbc4665b596706114, 0x873d5d9f0dde1fee, > -+ 0xeb57ff22fc0c7959, 0xa90cb506d155a7ea, > -+ 0x9316ff75dd87cbd8, 0x9a7f12442d588f2, > -+ 0xb7dcbf5354e9bece, 0xc11ed6d538aeb2f, > -+ 0xe5d3ef282a242e81, 0x8f1668c8a86da5fa, > -+ 0x8fa475791a569d10, 0xf96e017d694487bc, > -+ 0xb38d92d760ec4455, 0x37c981dcc395a9ac, > -+ 0xe070f78d3927556a, 0x85bbe253f47b1417, > -+ 0x8c469ab843b89562, 0x93956d7478ccec8e, > -+ 0xaf58416654a6babb, 0x387ac8d1970027b2, > -+ 0xdb2e51bfe9d0696a, 0x6997b05fcc0319e, > -+ 0x88fcf317f22241e2, 0x441fece3bdf81f03, > -+ 0xab3c2fddeeaad25a, 0xd527e81cad7626c3, > -+ 0xd60b3bd56a5586f1, 0x8a71e223d8d3b074, > -+ 0x85c7056562757456, 0xf6872d5667844e49, > -+ 0xa738c6bebb12d16c, 0xb428f8ac016561db, > -+ 0xd106f86e69d785c7, 0xe13336d701beba52, > -+ 0x82a45b450226b39c, 0xecc0024661173473, > -+ 0xa34d721642b06084, 0x27f002d7f95d0190, > -+ 0xcc20ce9bd35c78a5, 0x31ec038df7b441f4, > -+ 0xff290242c83396ce, 0x7e67047175a15271, > -+ 0x9f79a169bd203e41, 0xf0062c6e984d386, > -+ 0xc75809c42c684dd1, 0x52c07b78a3e60868, > -+ 0xf92e0c3537826145, 0xa7709a56ccdf8a82, > -+ 0x9bbcc7a142b17ccb, 0x88a66076400bb691, > -+ 0xc2abf989935ddbfe, 0x6acff893d00ea435, > -+ 0xf356f7ebf83552fe, 0x583f6b8c4124d43, > -+ 0x98165af37b2153de, 0xc3727a337a8b704a, > -+ 0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5c, > -+ 0xeda2ee1c7064130c, 0x1162def06f79df73, > -+ 0x9485d4d1c63e8be7, 0x8addcb5645ac2ba8, > -+ 0xb9a74a0637ce2ee1, 0x6d953e2bd7173692, > -+ 0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0437, > -+ 0x910ab1d4db9914a0, 0x1d9c9892400a22a2, > -+ 0xb54d5e4a127f59c8, 0x2503beb6d00cab4b, > -+ 0xe2a0b5dc971f303a, 0x2e44ae64840fd61d, > -+ 0x8da471a9de737e24, 0x5ceaecfed289e5d2, > -+ 0xb10d8e1456105dad, 0x7425a83e872c5f47, > -+ 0xdd50f1996b947518, 0xd12f124e28f77719, > -+ 0x8a5296ffe33cc92f, 0x82bd6b70d99aaa6f, > -+ 0xace73cbfdc0bfb7b, 0x636cc64d1001550b, > -+ 0xd8210befd30efa5a, 0x3c47f7e05401aa4e, > -+ 0x8714a775e3e95c78, 0x65acfaec34810a71, > -+ 0xa8d9d1535ce3b396, 0x7f1839a741a14d0d, > -+ 0xd31045a8341ca07c, 0x1ede48111209a050, > -+ 0x83ea2b892091e44d, 0x934aed0aab460432, > -+ 0xa4e4b66b68b65d60, 0xf81da84d5617853f, > -+ 0xce1de40642e3f4b9, 0x36251260ab9d668e, > -+ 0x80d2ae83e9ce78f3, 0xc1d72b7c6b426019, > -+ 0xa1075a24e4421730, 0xb24cf65b8612f81f, > -+ 0xc94930ae1d529cfc, 0xdee033f26797b627, > -+ 0xfb9b7cd9a4a7443c, 0x169840ef017da3b1, > -+ 0x9d412e0806e88aa5, 0x8e1f289560ee864e, > -+ 0xc491798a08a2ad4e, 0xf1a6f2bab92a27e2, > -+ 0xf5b5d7ec8acb58a2, 0xae10af696774b1db, > -+ 0x9991a6f3d6bf1765, 0xacca6da1e0a8ef29, > -+ 0xbff610b0cc6edd3f, 0x17fd090a58d32af3, > -+ 0xeff394dcff8a948e, 0xddfc4b4cef07f5b0, > -+ 0x95f83d0a1fb69cd9, 0x4abdaf101564f98e, > -+ 0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f1, > -+ 0xea53df5fd18d5513, 0x84c86189216dc5ed, > -+ 0x92746b9be2f8552c, 0x32fd3cf5b4e49bb4, > -+ 0xb7118682dbb66a77, 0x3fbc8c33221dc2a1, > -+ 0xe4d5e82392a40515, 0xfabaf3feaa5334a, > -+ 0x8f05b1163ba6832d, 0x29cb4d87f2a7400e, > -+ 0xb2c71d5bca9023f8, 0x743e20e9ef511012, > -+ 0xdf78e4b2bd342cf6, 0x914da9246b255416, > -+ 0x8bab8eefb6409c1a, 0x1ad089b6c2f7548e, > -+ 0xae9672aba3d0c320, 0xa184ac2473b529b1, > -+ 0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741e, > -+ 0x8865899617fb1871, 0x7e2fa67c7a658892, > -+ 0xaa7eebfb9df9de8d, 0xddbb901b98feeab7, > -+ 0xd51ea6fa85785631, 0x552a74227f3ea565, > -+ 0x8533285c936b35de, 0xd53a88958f87275f, > -+ 0xa67ff273b8460356, 0x8a892abaf368f137, > -+ 0xd01fef10a657842c, 0x2d2b7569b0432d85, > -+ 0x8213f56a67f6b29b, 0x9c3b29620e29fc73, > -+ 0xa298f2c501f45f42, 0x8349f3ba91b47b8f, > -+ 0xcb3f2f7642717713, 0x241c70a936219a73, > -+ 0xfe0efb53d30dd4d7, 0xed238cd383aa0110, > -+ 0x9ec95d1463e8a506, 0xf4363804324a40aa, > -+ 0xc67bb4597ce2ce48, 0xb143c6053edcd0d5, > -+ 0xf81aa16fdc1b81da, 0xdd94b7868e94050a, > -+ 0x9b10a4e5e9913128, 0xca7cf2b4191c8326, > -+ 0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f0, > -+ 0xf24a01a73cf2dccf, 0xbc633b39673c8cec, > -+ 0x976e41088617ca01, 0xd5be0503e085d813, > -+ 0xbd49d14aa79dbc82, 0x4b2d8644d8a74e18, > -+ 0xec9c459d51852ba2, 0xddf8e7d60ed1219e, > -+ 0x93e1ab8252f33b45, 0xcabb90e5c942b503, > -+ 0xb8da1662e7b00a17, 0x3d6a751f3b936243, > -+ 0xe7109bfba19c0c9d, 0xcc512670a783ad4, > -+ 0x906a617d450187e2, 0x27fb2b80668b24c5, > -+ 0xb484f9dc9641e9da, 0xb1f9f660802dedf6, > -+ 0xe1a63853bbd26451, 0x5e7873f8a0396973, > -+ 0x8d07e33455637eb2, 0xdb0b487b6423e1e8, > -+ 0xb049dc016abc5e5f, 0x91ce1a9a3d2cda62, > -+ 0xdc5c5301c56b75f7, 0x7641a140cc7810fb, > -+ 0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9d, > -+ 0xac2820d9623bf429, 0x546345fa9fbdcd44, > -+ 0xd732290fbacaf133, 0xa97c177947ad4095, > -+ 0x867f59a9d4bed6c0, 0x49ed8eabcccc485d, > -+ 0xa81f301449ee8c70, 0x5c68f256bfff5a74, > -+ 0xd226fc195c6a2f8c, 0x73832eec6fff3111, > -+ 0x83585d8fd9c25db7, 0xc831fd53c5ff7eab, > -+ 0xa42e74f3d032f525, 0xba3e7ca8b77f5e55, > -+ 0xcd3a1230c43fb26f, 0x28ce1bd2e55f35eb, > -+ 0x80444b5e7aa7cf85, 0x7980d163cf5b81b3, > -+ 0xa0555e361951c366, 0xd7e105bcc332621f, > -+ 0xc86ab5c39fa63440, 0x8dd9472bf3fefaa7, > -+ 0xfa856334878fc150, 0xb14f98f6f0feb951, > -+ 0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d3, > -+ 0xc3b8358109e84f07, 0xa862f80ec4700c8, > -+ 0xf4a642e14c6262c8, 0xcd27bb612758c0fa, > -+ 0x98e7e9cccfbd7dbd, 0x8038d51cb897789c, > -+ 0xbf21e44003acdd2c, 0xe0470a63e6bd56c3, > -+ 0xeeea5d5004981478, 0x1858ccfce06cac74, > -+ 0x95527a5202df0ccb, 0xf37801e0c43ebc8, > -+ 0xbaa718e68396cffd, 0xd30560258f54e6ba, > -+ 0xe950df20247c83fd, 0x47c6b82ef32a2069, > -+ 0x91d28b7416cdd27e, 0x4cdc331d57fa5441, > -+ 0xb6472e511c81471d, 0xe0133fe4adf8e952, > -+ 0xe3d8f9e563a198e5, 0x58180fddd97723a6, > -+ 0x8e679c2f5e44ff8f, 0x570f09eaa7ea7648, > -+ }; > -+}; > -+ > -+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE > -+ > -+template <class unused> > -+constexpr uint64_t > -+ powers_template<unused>::power_of_five_128[number_of_entries]; > -+ > -+#endif > -+ > -+using powers = powers_template<>; > -+ > -+} // namespace fast_float > -+ > -+#endif > -+ > -+#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H > -+#define FASTFLOAT_DECIMAL_TO_BINARY_H > -+ > -+#include <cfloat> > -+#include <cinttypes> > -+#include <cmath> > -+#include <cstdint> > -+#include <cstdlib> > -+#include <cstring> > -+ > -+namespace fast_float { > -+ > -+// This will compute or rather approximate w * 5**q and return a pair of 64-bit > -+// words approximating the result, with the "high" part corresponding to the > -+// most significant bits and the low part corresponding to the least significant > -+// bits. > -+// > -+template <int bit_precision> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128 > -+compute_product_approximation(int64_t q, uint64_t w) { > -+ const int index = 2 * int(q - powers::smallest_power_of_five); > -+ // For small values of q, e.g., q in [0,27], the answer is always exact > -+ // because The line value128 firstproduct = full_multiplication(w, > -+ // power_of_five_128[index]); gives the exact answer. > -+ value128 firstproduct = > -+ full_multiplication(w, powers::power_of_five_128[index]); > -+ static_assert((bit_precision >= 0) && (bit_precision <= 64), > -+ " precision should be in (0,64]"); > -+ constexpr uint64_t precision_mask = > -+ (bit_precision < 64) ? (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision) > -+ : uint64_t(0xFFFFFFFFFFFFFFFF); > -+ if ((firstproduct.high & precision_mask) == > -+ precision_mask) { // could further guard with (lower + w < lower) > -+ // regarding the second product, we only need secondproduct.high, but our > -+ // expectation is that the compiler will optimize this extra work away if > -+ // needed. > -+ value128 secondproduct = > -+ full_multiplication(w, powers::power_of_five_128[index + 1]); > -+ firstproduct.low += secondproduct.high; > -+ if (secondproduct.high > firstproduct.low) { > -+ firstproduct.high++; > -+ } > -+ } > -+ return firstproduct; > -+} > -+ > -+namespace detail { > -+/** > -+ * For q in (0,350), we have that > -+ * f = (((152170 + 65536) * q ) >> 16); > -+ * is equal to > -+ * floor(p) + q > -+ * where > -+ * p = log(5**q)/log(2) = q * log(5)/log(2) > -+ * > -+ * For negative values of q in (-400,0), we have that > -+ * f = (((152170 + 65536) * q ) >> 16); > -+ * is equal to > -+ * -ceil(p) + q > -+ * where > -+ * p = log(5**-q)/log(2) = -q * log(5)/log(2) > -+ */ > -+constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept { > -+ return (((152170 + 65536) * q) >> 16) + 63; > -+} > -+} // namespace detail > -+ > -+// create an adjusted mantissa, biased by the invalid power2 > -+// for significant digits already multiplied by 10 ** q. > -+template <typename binary> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 adjusted_mantissa > -+compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept { > -+ int hilz = int(w >> 63) ^ 1; > -+ adjusted_mantissa answer; > -+ answer.mantissa = w << hilz; > -+ int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent(); > -+ answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 + > -+ invalid_am_bias); > -+ return answer; > -+} > -+ > -+// w * 10 ** q, without rounding the representation up. > -+// the power2 in the exponent will be adjusted by invalid_am_bias. > -+template <typename binary> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa > -+compute_error(int64_t q, uint64_t w) noexcept { > -+ int lz = leading_zeroes(w); > -+ w <<= lz; > -+ value128 product = > -+ compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w); > -+ return compute_error_scaled<binary>(q, product.high, lz); > -+} > -+ > -+// w * 10 ** q > -+// The returned value should be a valid ieee64 number that simply need to be > -+// packed. However, in some very rare cases, the computation will fail. In such > -+// cases, we return an adjusted_mantissa with a negative power of 2: the caller > -+// should recompute in such cases. > -+template <typename binary> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa > -+compute_float(int64_t q, uint64_t w) noexcept { > -+ adjusted_mantissa answer; > -+ if ((w == 0) || (q < binary::smallest_power_of_ten())) { > -+ answer.power2 = 0; > -+ answer.mantissa = 0; > -+ // result should be zero > -+ return answer; > -+ } > -+ if (q > binary::largest_power_of_ten()) { > -+ // we want to get infinity: > -+ answer.power2 = binary::infinite_power(); > -+ answer.mantissa = 0; > -+ return answer; > -+ } > -+ // At this point in time q is in [powers::smallest_power_of_five, > -+ // powers::largest_power_of_five]. > -+ > -+ // We want the most significant bit of i to be 1. Shift if needed. > -+ int lz = leading_zeroes(w); > -+ w <<= lz; > -+ > -+ // The required precision is binary::mantissa_explicit_bits() + 3 because > -+ // 1. We need the implicit bit > -+ // 2. We need an extra bit for rounding purposes > -+ // 3. We might lose a bit due to the "upperbit" routine (result too small, > -+ // requiring a shift) > -+ > -+ value128 product = > -+ compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w); > -+ // The computed 'product' is always sufficient. > -+ // Mathematical proof: > -+ // Noble Mushtak and Daniel Lemire, Fast Number Parsing Without Fallback (to > -+ // appear) See script/mushtak_lemire.py > -+ > -+ // The "compute_product_approximation" function can be slightly slower than a > -+ // branchless approach: value128 product = compute_product(q, w); but in > -+ // practice, we can win big with the compute_product_approximation if its > -+ // additional branch is easily predicted. Which is best is data specific. > -+ int upperbit = int(product.high >> 63); > -+ int shift = upperbit + 64 - binary::mantissa_explicit_bits() - 3; > -+ > -+ answer.mantissa = product.high >> shift; > -+ > -+ answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz - > -+ binary::minimum_exponent()); > -+ if (answer.power2 <= 0) { // we have a subnormal? > -+ // Here have that answer.power2 <= 0 so -answer.power2 >= 0 > -+ if (-answer.power2 + 1 >= > -+ 64) { // if we have more than 64 bits below the minimum exponent, you > -+ // have a zero for sure. > -+ answer.power2 = 0; > -+ answer.mantissa = 0; > -+ // result should be zero > -+ return answer; > -+ } > -+ // next line is safe because -answer.power2 + 1 < 64 > -+ answer.mantissa >>= -answer.power2 + 1; > -+ // Thankfully, we can't have both "round-to-even" and subnormals because > -+ // "round-to-even" only occurs for powers close to 0. > -+ answer.mantissa += (answer.mantissa & 1); // round up > -+ answer.mantissa >>= 1; > -+ // There is a weird scenario where we don't have a subnormal but just. > -+ // Suppose we start with 2.2250738585072013e-308, we end up > -+ // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal > -+ // whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round > -+ // up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer > -+ // subnormal, but we can only know this after rounding. > -+ // So we only declare a subnormal if we are smaller than the threshold. > -+ answer.power2 = > -+ (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) > -+ ? 0 > -+ : 1; > -+ return answer; > -+ } > -+ > -+ // usually, we round *up*, but if we fall right in between and and we have an > -+ // even basis, we need to round down > -+ // We are only concerned with the cases where 5**q fits in single 64-bit word. > -+ if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) && > -+ (q <= binary::max_exponent_round_to_even()) && > -+ ((answer.mantissa & 3) == 1)) { // we may fall between two floats! > -+ // To be in-between two floats we need that in doing > -+ // answer.mantissa = product.high >> (upperbit + 64 - > -+ // binary::mantissa_explicit_bits() - 3); > -+ // ... we dropped out only zeroes. But if this happened, then we can go > -+ // back!!! > -+ if ((answer.mantissa << shift) == product.high) { > -+ answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up > -+ } > -+ } > -+ > -+ answer.mantissa += (answer.mantissa & 1); // round up > -+ answer.mantissa >>= 1; > -+ if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) { > -+ answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits()); > -+ answer.power2++; // undo previous addition > -+ } > -+ > -+ answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits()); > -+ if (answer.power2 >= binary::infinite_power()) { // infinity > -+ answer.power2 = binary::infinite_power(); > -+ answer.mantissa = 0; > -+ } > -+ return answer; > -+} > -+ > -+} // namespace fast_float > -+ > -+#endif > -+ > -+#ifndef FASTFLOAT_BIGINT_H > -+#define FASTFLOAT_BIGINT_H > -+ > -+#include <algorithm> > -+#include <cstdint> > -+#include <climits> > -+#include <cstring> > -+ > -+ > -+namespace fast_float { > -+ > -+// the limb width: we want efficient multiplication of double the bits in > -+// limb, or for 64-bit limbs, at least 64-bit multiplication where we can > -+// extract the high and low parts efficiently. this is every 64-bit > -+// architecture except for sparc, which emulates 128-bit multiplication. > -+// we might have platforms where `CHAR_BIT` is not 8, so let's avoid > -+// doing `8 * sizeof(limb)`. > -+#if defined(FASTFLOAT_64BIT) && !defined(__sparc) > -+#define FASTFLOAT_64BIT_LIMB 1 > -+typedef uint64_t limb; > -+constexpr size_t limb_bits = 64; > -+#else > -+#define FASTFLOAT_32BIT_LIMB > -+typedef uint32_t limb; > -+constexpr size_t limb_bits = 32; > -+#endif > -+ > -+typedef span<limb> limb_span; > -+ > -+// number of bits in a bigint. this needs to be at least the number > -+// of bits required to store the largest bigint, which is > -+// `log2(10**(digits + max_exp))`, or `log2(10**(767 + 342))`, or > -+// ~3600 bits, so we round to 4000. > -+constexpr size_t bigint_bits = 4000; > -+constexpr size_t bigint_limbs = bigint_bits / limb_bits; > -+ > -+// vector-like type that is allocated on the stack. the entire > -+// buffer is pre-allocated, and only the length changes. > -+template <uint16_t size> struct stackvec { > -+ limb data[size]; > -+ // we never need more than 150 limbs > -+ uint16_t length{0}; > -+ > -+ stackvec() = default; > -+ stackvec(const stackvec &) = delete; > -+ stackvec &operator=(const stackvec &) = delete; > -+ stackvec(stackvec &&) = delete; > -+ stackvec &operator=(stackvec &&other) = delete; > -+ > -+ // create stack vector from existing limb span. > -+ FASTFLOAT_CONSTEXPR20 stackvec(limb_span s) { > -+ FASTFLOAT_ASSERT(try_extend(s)); > -+ } > -+ > -+ FASTFLOAT_CONSTEXPR14 limb &operator[](size_t index) noexcept { > -+ FASTFLOAT_DEBUG_ASSERT(index < length); > -+ return data[index]; > -+ } > -+ FASTFLOAT_CONSTEXPR14 const limb &operator[](size_t index) const noexcept { > -+ FASTFLOAT_DEBUG_ASSERT(index < length); > -+ return data[index]; > -+ } > -+ // index from the end of the container > -+ FASTFLOAT_CONSTEXPR14 const limb &rindex(size_t index) const noexcept { > -+ FASTFLOAT_DEBUG_ASSERT(index < length); > -+ size_t rindex = length - index - 1; > -+ return data[rindex]; > -+ } > -+ > -+ // set the length, without bounds checking. > -+ FASTFLOAT_CONSTEXPR14 void set_len(size_t len) noexcept { > -+ length = uint16_t(len); > -+ } > -+ constexpr size_t len() const noexcept { return length; } > -+ constexpr bool is_empty() const noexcept { return length == 0; } > -+ constexpr size_t capacity() const noexcept { return size; } > -+ // append item to vector, without bounds checking > -+ FASTFLOAT_CONSTEXPR14 void push_unchecked(limb value) noexcept { > -+ data[length] = value; > -+ length++; > -+ } > -+ // append item to vector, returning if item was added > -+ FASTFLOAT_CONSTEXPR14 bool try_push(limb value) noexcept { > -+ if (len() < capacity()) { > -+ push_unchecked(value); > -+ return true; > -+ } else { > -+ return false; > -+ } > -+ } > -+ // add items to the vector, from a span, without bounds checking > -+ FASTFLOAT_CONSTEXPR20 void extend_unchecked(limb_span s) noexcept { > -+ limb *ptr = data + length; > -+ std::copy_n(s.ptr, s.len(), ptr); > -+ set_len(len() + s.len()); > -+ } > -+ // try to add items to the vector, returning if items were added > -+ FASTFLOAT_CONSTEXPR20 bool try_extend(limb_span s) noexcept { > -+ if (len() + s.len() <= capacity()) { > -+ extend_unchecked(s); > -+ return true; > -+ } else { > -+ return false; > -+ } > -+ } > -+ // resize the vector, without bounds checking > -+ // if the new size is longer than the vector, assign value to each > -+ // appended item. > -+ FASTFLOAT_CONSTEXPR20 > -+ void resize_unchecked(size_t new_len, limb value) noexcept { > -+ if (new_len > len()) { > -+ size_t count = new_len - len(); > -+ limb *first = data + len(); > -+ limb *last = first + count; > -+ ::std::fill(first, last, value); > -+ set_len(new_len); > -+ } else { > -+ set_len(new_len); > -+ } > -+ } > -+ // try to resize the vector, returning if the vector was resized. > -+ FASTFLOAT_CONSTEXPR20 bool try_resize(size_t new_len, limb value) noexcept { > -+ if (new_len > capacity()) { > -+ return false; > -+ } else { > -+ resize_unchecked(new_len, value); > -+ return true; > -+ } > -+ } > -+ // check if any limbs are non-zero after the given index. > -+ // this needs to be done in reverse order, since the index > -+ // is relative to the most significant limbs. > -+ FASTFLOAT_CONSTEXPR14 bool nonzero(size_t index) const noexcept { > -+ while (index < len()) { > -+ if (rindex(index) != 0) { > -+ return true; > -+ } > -+ index++; > -+ } > -+ return false; > -+ } > -+ // normalize the big integer, so most-significant zero limbs are removed. > -+ FASTFLOAT_CONSTEXPR14 void normalize() noexcept { > -+ while (len() > 0 && rindex(0) == 0) { > -+ length--; > -+ } > -+ } > -+}; > -+ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t > -+empty_hi64(bool &truncated) noexcept { > -+ truncated = false; > -+ return 0; > -+} > -+ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t > -+uint64_hi64(uint64_t r0, bool &truncated) noexcept { > -+ truncated = false; > -+ int shl = leading_zeroes(r0); > -+ return r0 << shl; > -+} > -+ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t > -+uint64_hi64(uint64_t r0, uint64_t r1, bool &truncated) noexcept { > -+ int shl = leading_zeroes(r0); > -+ if (shl == 0) { > -+ truncated = r1 != 0; > -+ return r0; > -+ } else { > -+ int shr = 64 - shl; > -+ truncated = (r1 << shl) != 0; > -+ return (r0 << shl) | (r1 >> shr); > -+ } > -+} > -+ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t > -+uint32_hi64(uint32_t r0, bool &truncated) noexcept { > -+ return uint64_hi64(r0, truncated); > -+} > -+ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t > -+uint32_hi64(uint32_t r0, uint32_t r1, bool &truncated) noexcept { > -+ uint64_t x0 = r0; > -+ uint64_t x1 = r1; > -+ return uint64_hi64((x0 << 32) | x1, truncated); > -+} > -+ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t > -+uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool &truncated) noexcept { > -+ uint64_t x0 = r0; > -+ uint64_t x1 = r1; > -+ uint64_t x2 = r2; > -+ return uint64_hi64(x0, (x1 << 32) | x2, truncated); > -+} > -+ > -+// add two small integers, checking for overflow. > -+// we want an efficient operation. for msvc, where > -+// we don't have built-in intrinsics, this is still > -+// pretty fast. > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb > -+scalar_add(limb x, limb y, bool &overflow) noexcept { > -+ limb z; > -+// gcc and clang > -+#if defined(__has_builtin) > -+#if __has_builtin(__builtin_add_overflow) > -+ if (!cpp20_and_in_constexpr()) { > -+ overflow = __builtin_add_overflow(x, y, &z); > -+ return z; > -+ } > -+#endif > -+#endif > -+ > -+ // generic, this still optimizes correctly on MSVC. > -+ z = x + y; > -+ overflow = z < x; > -+ return z; > -+} > -+ > -+// multiply two small integers, getting both the high and low bits. > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb > -+scalar_mul(limb x, limb y, limb &carry) noexcept { > -+#ifdef FASTFLOAT_64BIT_LIMB > -+#if defined(__SIZEOF_INT128__) > -+ // GCC and clang both define it as an extension. > -+ __uint128_t z = __uint128_t(x) * __uint128_t(y) + __uint128_t(carry); > -+ carry = limb(z >> limb_bits); > -+ return limb(z); > -+#else > -+ // fallback, no native 128-bit integer multiplication with carry. > -+ // on msvc, this optimizes identically, somehow. > -+ value128 z = full_multiplication(x, y); > -+ bool overflow; > -+ z.low = scalar_add(z.low, carry, overflow); > -+ z.high += uint64_t(overflow); // cannot overflow > -+ carry = z.high; > -+ return z.low; > -+#endif > -+#else > -+ uint64_t z = uint64_t(x) * uint64_t(y) + uint64_t(carry); > -+ carry = limb(z >> limb_bits); > -+ return limb(z); > -+#endif > -+} > -+ > -+// add scalar value to bigint starting from offset. > -+// used in grade school multiplication > -+template <uint16_t size> > -+inline FASTFLOAT_CONSTEXPR20 bool small_add_from(stackvec<size> &vec, limb y, > -+ size_t start) noexcept { > -+ size_t index = start; > -+ limb carry = y; > -+ bool overflow; > -+ while (carry != 0 && index < vec.len()) { > -+ vec[index] = scalar_add(vec[index], carry, overflow); > -+ carry = limb(overflow); > -+ index += 1; > -+ } > -+ if (carry != 0) { > -+ FASTFLOAT_TRY(vec.try_push(carry)); > -+ } > -+ return true; > -+} > -+ > -+// add scalar value to bigint. > -+template <uint16_t size> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool > -+small_add(stackvec<size> &vec, limb y) noexcept { > -+ return small_add_from(vec, y, 0); > -+} > -+ > -+// multiply bigint by scalar value. > -+template <uint16_t size> > -+inline FASTFLOAT_CONSTEXPR20 bool small_mul(stackvec<size> &vec, > -+ limb y) noexcept { > -+ limb carry = 0; > -+ for (size_t index = 0; index < vec.len(); index++) { > -+ vec[index] = scalar_mul(vec[index], y, carry); > -+ } > -+ if (carry != 0) { > -+ FASTFLOAT_TRY(vec.try_push(carry)); > -+ } > -+ return true; > -+} > -+ > -+// add bigint to bigint starting from index. > -+// used in grade school multiplication > -+template <uint16_t size> > -+FASTFLOAT_CONSTEXPR20 bool large_add_from(stackvec<size> &x, limb_span y, > -+ size_t start) noexcept { > -+ // the effective x buffer is from `xstart..x.len()`, so exit early > -+ // if we can't get that current range. > -+ if (x.len() < start || y.len() > x.len() - start) { > -+ FASTFLOAT_TRY(x.try_resize(y.len() + start, 0)); > -+ } > -+ > -+ bool carry = false; > -+ for (size_t index = 0; index < y.len(); index++) { > -+ limb xi = x[index + start]; > -+ limb yi = y[index]; > -+ bool c1 = false; > -+ bool c2 = false; > -+ xi = scalar_add(xi, yi, c1); > -+ if (carry) { > -+ xi = scalar_add(xi, 1, c2); > -+ } > -+ x[index + start] = xi; > -+ carry = c1 | c2; > -+ } > -+ > -+ // handle overflow > -+ if (carry) { > -+ FASTFLOAT_TRY(small_add_from(x, 1, y.len() + start)); > -+ } > -+ return true; > -+} > -+ > -+// add bigint to bigint. > -+template <uint16_t size> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool > -+large_add_from(stackvec<size> &x, limb_span y) noexcept { > -+ return large_add_from(x, y, 0); > -+} > -+ > -+// grade-school multiplication algorithm > -+template <uint16_t size> > -+FASTFLOAT_CONSTEXPR20 bool long_mul(stackvec<size> &x, limb_span y) noexcept { > -+ limb_span xs = limb_span(x.data, x.len()); > -+ stackvec<size> z(xs); > -+ limb_span zs = limb_span(z.data, z.len()); > -+ > -+ if (y.len() != 0) { > -+ limb y0 = y[0]; > -+ FASTFLOAT_TRY(small_mul(x, y0)); > -+ for (size_t index = 1; index < y.len(); index++) { > -+ limb yi = y[index]; > -+ stackvec<size> zi; > -+ if (yi != 0) { > -+ // re-use the same buffer throughout > -+ zi.set_len(0); > -+ FASTFLOAT_TRY(zi.try_extend(zs)); > -+ FASTFLOAT_TRY(small_mul(zi, yi)); > -+ limb_span zis = limb_span(zi.data, zi.len()); > -+ FASTFLOAT_TRY(large_add_from(x, zis, index)); > -+ } > -+ } > -+ } > -+ > -+ x.normalize(); > -+ return true; > -+} > -+ > -+// grade-school multiplication algorithm > -+template <uint16_t size> > -+FASTFLOAT_CONSTEXPR20 bool large_mul(stackvec<size> &x, limb_span y) noexcept { > -+ if (y.len() == 1) { > -+ FASTFLOAT_TRY(small_mul(x, y[0])); > -+ } else { > -+ FASTFLOAT_TRY(long_mul(x, y)); > -+ } > -+ return true; > -+} > -+ > -+template <typename = void> struct pow5_tables { > -+ static constexpr uint32_t large_step = 135; > -+ static constexpr uint64_t small_power_of_5[] = { > -+ 1UL, > -+ 5UL, > -+ 25UL, > -+ 125UL, > -+ 625UL, > -+ 3125UL, > -+ 15625UL, > -+ 78125UL, > -+ 390625UL, > -+ 1953125UL, > -+ 9765625UL, > -+ 48828125UL, > -+ 244140625UL, > -+ 1220703125UL, > -+ 6103515625UL, > -+ 30517578125UL, > -+ 152587890625UL, > -+ 762939453125UL, > -+ 3814697265625UL, > -+ 19073486328125UL, > -+ 95367431640625UL, > -+ 476837158203125UL, > -+ 2384185791015625UL, > -+ 11920928955078125UL, > -+ 59604644775390625UL, > -+ 298023223876953125UL, > -+ 1490116119384765625UL, > -+ 7450580596923828125UL, > -+ }; > -+#ifdef FASTFLOAT_64BIT_LIMB > -+ constexpr static limb large_power_of_5[] = { > -+ 1414648277510068013UL, 9180637584431281687UL, 4539964771860779200UL, > -+ 10482974169319127550UL, 198276706040285095UL}; > -+#else > -+ constexpr static limb large_power_of_5[] = { > -+ 4279965485U, 329373468U, 4020270615U, 2137533757U, 4287402176U, > -+ 1057042919U, 1071430142U, 2440757623U, 381945767U, 46164893U}; > -+#endif > -+}; > -+ > -+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE > -+ > -+template <typename T> constexpr uint32_t pow5_tables<T>::large_step; > -+ > -+template <typename T> constexpr uint64_t pow5_tables<T>::small_power_of_5[]; > -+ > -+template <typename T> constexpr limb pow5_tables<T>::large_power_of_5[]; > -+ > -+#endif > -+ > -+// big integer type. implements a small subset of big integer > -+// arithmetic, using simple algorithms since asymptotically > -+// faster algorithms are slower for a small number of limbs. > -+// all operations assume the big-integer is normalized. > -+struct bigint : pow5_tables<> { > -+ // storage of the limbs, in little-endian order. > -+ stackvec<bigint_limbs> vec; > -+ > -+ FASTFLOAT_CONSTEXPR20 bigint() : vec() {} > -+ bigint(const bigint &) = delete; > -+ bigint &operator=(const bigint &) = delete; > -+ bigint(bigint &&) = delete; > -+ bigint &operator=(bigint &&other) = delete; > -+ > -+ FASTFLOAT_CONSTEXPR20 bigint(uint64_t value) : vec() { > -+#ifdef FASTFLOAT_64BIT_LIMB > -+ vec.push_unchecked(value); > -+#else > -+ vec.push_unchecked(uint32_t(value)); > -+ vec.push_unchecked(uint32_t(value >> 32)); > -+#endif > -+ vec.normalize(); > -+ } > -+ > -+ // get the high 64 bits from the vector, and if bits were truncated. > -+ // this is to get the significant digits for the float. > -+ FASTFLOAT_CONSTEXPR20 uint64_t hi64(bool &truncated) const noexcept { > -+#ifdef FASTFLOAT_64BIT_LIMB > -+ if (vec.len() == 0) { > -+ return empty_hi64(truncated); > -+ } else if (vec.len() == 1) { > -+ return uint64_hi64(vec.rindex(0), truncated); > -+ } else { > -+ uint64_t result = uint64_hi64(vec.rindex(0), vec.rindex(1), truncated); > -+ truncated |= vec.nonzero(2); > -+ return result; > -+ } > -+#else > -+ if (vec.len() == 0) { > -+ return empty_hi64(truncated); > -+ } else if (vec.len() == 1) { > -+ return uint32_hi64(vec.rindex(0), truncated); > -+ } else if (vec.len() == 2) { > -+ return uint32_hi64(vec.rindex(0), vec.rindex(1), truncated); > -+ } else { > -+ uint64_t result = > -+ uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), truncated); > -+ truncated |= vec.nonzero(3); > -+ return result; > -+ } > -+#endif > -+ } > -+ > -+ // compare two big integers, returning the large value. > -+ // assumes both are normalized. if the return value is > -+ // negative, other is larger, if the return value is > -+ // positive, this is larger, otherwise they are equal. > -+ // the limbs are stored in little-endian order, so we > -+ // must compare the limbs in ever order. > -+ FASTFLOAT_CONSTEXPR20 int compare(const bigint &other) const noexcept { > -+ if (vec.len() > other.vec.len()) { > -+ return 1; > -+ } else if (vec.len() < other.vec.len()) { > -+ return -1; > -+ } else { > -+ for (size_t index = vec.len(); index > 0; index--) { > -+ limb xi = vec[index - 1]; > -+ limb yi = other.vec[index - 1]; > -+ if (xi > yi) { > -+ return 1; > -+ } else if (xi < yi) { > -+ return -1; > -+ } > -+ } > -+ return 0; > -+ } > -+ } > -+ > -+ // shift left each limb n bits, carrying over to the new limb > -+ // returns true if we were able to shift all the digits. > -+ FASTFLOAT_CONSTEXPR20 bool shl_bits(size_t n) noexcept { > -+ // Internally, for each item, we shift left by n, and add the previous > -+ // right shifted limb-bits. > -+ // For example, we transform (for u8) shifted left 2, to: > -+ // b10100100 b01000010 > -+ // b10 b10010001 b00001000 > -+ FASTFLOAT_DEBUG_ASSERT(n != 0); > -+ FASTFLOAT_DEBUG_ASSERT(n < sizeof(limb) * 8); > -+ > -+ size_t shl = n; > -+ size_t shr = limb_bits - shl; > -+ limb prev = 0; > -+ for (size_t index = 0; index < vec.len(); index++) { > -+ limb xi = vec[index]; > -+ vec[index] = (xi << shl) | (prev >> shr); > -+ prev = xi; > -+ } > -+ > -+ limb carry = prev >> shr; > -+ if (carry != 0) { > -+ return vec.try_push(carry); > -+ } > -+ return true; > -+ } > -+ > -+ // move the limbs left by `n` limbs. > -+ FASTFLOAT_CONSTEXPR20 bool shl_limbs(size_t n) noexcept { > -+ FASTFLOAT_DEBUG_ASSERT(n != 0); > -+ if (n + vec.len() > vec.capacity()) { > -+ return false; > -+ } else if (!vec.is_empty()) { > -+ // move limbs > -+ limb *dst = vec.data + n; > -+ const limb *src = vec.data; > -+ std::copy_backward(src, src + vec.len(), dst + vec.len()); > -+ // fill in empty limbs > -+ limb *first = vec.data; > -+ limb *last = first + n; > -+ ::std::fill(first, last, 0); > -+ vec.set_len(n + vec.len()); > -+ return true; > -+ } else { > -+ return true; > -+ } > -+ } > -+ > -+ // move the limbs left by `n` bits. > -+ FASTFLOAT_CONSTEXPR20 bool shl(size_t n) noexcept { > -+ size_t rem = n % limb_bits; > -+ size_t div = n / limb_bits; > -+ if (rem != 0) { > -+ FASTFLOAT_TRY(shl_bits(rem)); > -+ } > -+ if (div != 0) { > -+ FASTFLOAT_TRY(shl_limbs(div)); > -+ } > -+ return true; > -+ } > -+ > -+ // get the number of leading zeros in the bigint. > -+ FASTFLOAT_CONSTEXPR20 int ctlz() const noexcept { > -+ if (vec.is_empty()) { > -+ return 0; > -+ } else { > -+#ifdef FASTFLOAT_64BIT_LIMB > -+ return leading_zeroes(vec.rindex(0)); > -+#else > -+ // no use defining a specialized leading_zeroes for a 32-bit type. > -+ uint64_t r0 = vec.rindex(0); > -+ return leading_zeroes(r0 << 32); > -+#endif > -+ } > -+ } > -+ > -+ // get the number of bits in the bigint. > -+ FASTFLOAT_CONSTEXPR20 int bit_length() const noexcept { > -+ int lz = ctlz(); > -+ return int(limb_bits * vec.len()) - lz; > -+ } > -+ > -+ FASTFLOAT_CONSTEXPR20 bool mul(limb y) noexcept { return small_mul(vec, y); } > -+ > -+ FASTFLOAT_CONSTEXPR20 bool add(limb y) noexcept { return small_add(vec, y); } > -+ > -+ // multiply as if by 2 raised to a power. > -+ FASTFLOAT_CONSTEXPR20 bool pow2(uint32_t exp) noexcept { return shl(exp); } > -+ > -+ // multiply as if by 5 raised to a power. > -+ FASTFLOAT_CONSTEXPR20 bool pow5(uint32_t exp) noexcept { > -+ // multiply by a power of 5 > -+ size_t large_length = sizeof(large_power_of_5) / sizeof(limb); > -+ limb_span large = limb_span(large_power_of_5, large_length); > -+ while (exp >= large_step) { > -+ FASTFLOAT_TRY(large_mul(vec, large)); > -+ exp -= large_step; > -+ } > -+#ifdef FASTFLOAT_64BIT_LIMB > -+ uint32_t small_step = 27; > -+ limb max_native = 7450580596923828125UL; > -+#else > -+ uint32_t small_step = 13; > -+ limb max_native = 1220703125U; > -+#endif > -+ while (exp >= small_step) { > -+ FASTFLOAT_TRY(small_mul(vec, max_native)); > -+ exp -= small_step; > -+ } > -+ if (exp != 0) { > -+ // Work around clang bug https://godbolt.org/z/zedh7rrhc > -+ // This is similar to https://github.com/llvm/llvm-project/issues/47746, > -+ // except the workaround described there don't work here > -+ FASTFLOAT_TRY(small_mul( > -+ vec, limb(((void)small_power_of_5[0], small_power_of_5[exp])))); > -+ } > -+ > -+ return true; > -+ } > -+ > -+ // multiply as if by 10 raised to a power. > -+ FASTFLOAT_CONSTEXPR20 bool pow10(uint32_t exp) noexcept { > -+ FASTFLOAT_TRY(pow5(exp)); > -+ return pow2(exp); > -+ } > -+}; > -+ > -+} // namespace fast_float > -+ > -+#endif > -+ > -+#ifndef FASTFLOAT_DIGIT_COMPARISON_H > -+#define FASTFLOAT_DIGIT_COMPARISON_H > -+ > -+#include <algorithm> > -+#include <cstdint> > -+#include <cstring> > -+#include <iterator> > -+ > -+ > -+namespace fast_float { > -+ > -+// 1e0 to 1e19 > -+constexpr static uint64_t powers_of_ten_uint64[] = {1UL, > -+ 10UL, > -+ 100UL, > -+ 1000UL, > -+ 10000UL, > -+ 100000UL, > -+ 1000000UL, > -+ 10000000UL, > -+ 100000000UL, > -+ 1000000000UL, > -+ 10000000000UL, > -+ 100000000000UL, > -+ 1000000000000UL, > -+ 10000000000000UL, > -+ 100000000000000UL, > -+ 1000000000000000UL, > -+ 10000000000000000UL, > -+ 100000000000000000UL, > -+ 1000000000000000000UL, > -+ 10000000000000000000UL}; > -+ > -+// calculate the exponent, in scientific notation, of the number. > -+// this algorithm is not even close to optimized, but it has no practical > -+// effect on performance: in order to have a faster algorithm, we'd need > -+// to slow down performance for faster algorithms, and this is still fast. > -+template <typename UC> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int32_t > -+scientific_exponent(parsed_number_string_t<UC> &num) noexcept { > -+ uint64_t mantissa = num.mantissa; > -+ int32_t exponent = int32_t(num.exponent); > -+ while (mantissa >= 10000) { > -+ mantissa /= 10000; > -+ exponent += 4; > -+ } > -+ while (mantissa >= 100) { > -+ mantissa /= 100; > -+ exponent += 2; > -+ } > -+ while (mantissa >= 10) { > -+ mantissa /= 10; > -+ exponent += 1; > -+ } > -+ return exponent; > -+} > -+ > -+// this converts a native floating-point number to an extended-precision float. > -+template <typename T> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa > -+to_extended(T value) noexcept { > -+ using equiv_uint = typename binary_format<T>::equiv_uint; > -+ constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask(); > -+ constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask(); > -+ constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask(); > -+ > -+ adjusted_mantissa am; > -+ int32_t bias = binary_format<T>::mantissa_explicit_bits() - > -+ binary_format<T>::minimum_exponent(); > -+ equiv_uint bits; > -+#if FASTFLOAT_HAS_BIT_CAST > -+ bits = std::bit_cast<equiv_uint>(value); > -+#else > -+ ::memcpy(&bits, &value, sizeof(T)); > -+#endif > -+ if ((bits & exponent_mask) == 0) { > -+ // denormal > -+ am.power2 = 1 - bias; > -+ am.mantissa = bits & mantissa_mask; > -+ } else { > -+ // normal > -+ am.power2 = int32_t((bits & exponent_mask) >> > -+ binary_format<T>::mantissa_explicit_bits()); > -+ am.power2 -= bias; > -+ am.mantissa = (bits & mantissa_mask) | hidden_bit_mask; > -+ } > -+ > -+ return am; > -+} > -+ > -+// get the extended precision value of the halfway point between b and b+u. > -+// we are given a native float that represents b, so we need to adjust it > -+// halfway between b and b+u. > -+template <typename T> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa > -+to_extended_halfway(T value) noexcept { > -+ adjusted_mantissa am = to_extended(value); > -+ am.mantissa <<= 1; > -+ am.mantissa += 1; > -+ am.power2 -= 1; > -+ return am; > -+} > -+ > -+// round an extended-precision float to the nearest machine float. > -+template <typename T, typename callback> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void round(adjusted_mantissa &am, > -+ callback cb) noexcept { > -+ int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1; > -+ if (-am.power2 >= mantissa_shift) { > -+ // have a denormal float > -+ int32_t shift = -am.power2 + 1; > -+ cb(am, std::min<int32_t>(shift, 64)); > -+ // check for round-up: if rounding-nearest carried us to the hidden bit. > -+ am.power2 = (am.mantissa < > -+ (uint64_t(1) << binary_format<T>::mantissa_explicit_bits())) > -+ ? 0 > -+ : 1; > -+ return; > -+ } > -+ > -+ // have a normal float, use the default shift. > -+ cb(am, mantissa_shift); > -+ > -+ // check for carry > -+ if (am.mantissa >= > -+ (uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) { > -+ am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits()); > -+ am.power2++; > -+ } > -+ > -+ // check for infinite: we could have carried to an infinite power > -+ am.mantissa &= ~(uint64_t(1) << binary_format<T>::mantissa_explicit_bits()); > -+ if (am.power2 >= binary_format<T>::infinite_power()) { > -+ am.power2 = binary_format<T>::infinite_power(); > -+ am.mantissa = 0; > -+ } > -+} > -+ > -+template <typename callback> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void > -+round_nearest_tie_even(adjusted_mantissa &am, int32_t shift, > -+ callback cb) noexcept { > -+ const uint64_t mask = (shift == 64) ? UINT64_MAX : (uint64_t(1) << shift) - 1; > -+ const uint64_t halfway = (shift == 0) ? 0 : uint64_t(1) << (shift - 1); > -+ uint64_t truncated_bits = am.mantissa & mask; > -+ bool is_above = truncated_bits > halfway; > -+ bool is_halfway = truncated_bits == halfway; > -+ > -+ // shift digits into position > -+ if (shift == 64) { > -+ am.mantissa = 0; > -+ } else { > -+ am.mantissa >>= shift; > -+ } > -+ am.power2 += shift; > -+ > -+ bool is_odd = (am.mantissa & 1) == 1; > -+ am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above)); > -+} > -+ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void > -+round_down(adjusted_mantissa &am, int32_t shift) noexcept { > -+ if (shift == 64) { > -+ am.mantissa = 0; > -+ } else { > -+ am.mantissa >>= shift; > -+ } > -+ am.power2 += shift; > -+} > -+template <typename UC> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void > -+skip_zeros(UC const *&first, UC const *last) noexcept { > -+ uint64_t val; > -+ while (!cpp20_and_in_constexpr() && > -+ std::distance(first, last) >= int_cmp_len<UC>()) { > -+ ::memcpy(&val, first, sizeof(uint64_t)); > -+ if (val != int_cmp_zeros<UC>()) { > -+ break; > -+ } > -+ first += int_cmp_len<UC>(); > -+ } > -+ while (first != last) { > -+ if (*first != UC('0')) { > -+ break; > -+ } > -+ first++; > -+ } > -+} > -+ > -+// determine if any non-zero digits were truncated. > -+// all characters must be valid digits. > -+template <typename UC> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool > -+is_truncated(UC const *first, UC const *last) noexcept { > -+ // do 8-bit optimizations, can just compare to 8 literal 0s. > -+ uint64_t val; > -+ while (!cpp20_and_in_constexpr() && > -+ std::distance(first, last) >= int_cmp_len<UC>()) { > -+ ::memcpy(&val, first, sizeof(uint64_t)); > -+ if (val != int_cmp_zeros<UC>()) { > -+ return true; > -+ } > -+ first += int_cmp_len<UC>(); > -+ } > -+ while (first != last) { > -+ if (*first != UC('0')) { > -+ return true; > -+ } > -+ ++first; > -+ } > -+ return false; > -+} > -+template <typename UC> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool > -+is_truncated(span<const UC> s) noexcept { > -+ return is_truncated(s.ptr, s.ptr + s.len()); > -+} > -+ > -+template <typename UC> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void > -+parse_eight_digits(const UC *&p, limb &value, size_t &counter, > -+ size_t &count) noexcept { > -+ value = value * 100000000 + parse_eight_digits_unrolled(p); > -+ p += 8; > -+ counter += 8; > -+ count += 8; > -+} > -+ > -+template <typename UC> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void > -+parse_one_digit(UC const *&p, limb &value, size_t &counter, > -+ size_t &count) noexcept { > -+ value = value * 10 + limb(*p - UC('0')); > -+ p++; > -+ counter++; > -+ count++; > -+} > -+ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void > -+add_native(bigint &big, limb power, limb value) noexcept { > -+ big.mul(power); > -+ big.add(value); > -+} > -+ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void > -+round_up_bigint(bigint &big, size_t &count) noexcept { > -+ // need to round-up the digits, but need to avoid rounding > -+ // ....9999 to ...10000, which could cause a false halfway point. > -+ add_native(big, 10, 1); > -+ count++; > -+} > -+ > -+// parse the significant digits into a big integer > -+template <typename UC> > -+inline FASTFLOAT_CONSTEXPR20 void > -+parse_mantissa(bigint &result, parsed_number_string_t<UC> &num, > -+ size_t max_digits, size_t &digits) noexcept { > -+ // try to minimize the number of big integer and scalar multiplication. > -+ // therefore, try to parse 8 digits at a time, and multiply by the largest > -+ // scalar value (9 or 19 digits) for each step. > -+ size_t counter = 0; > -+ digits = 0; > -+ limb value = 0; > -+#ifdef FASTFLOAT_64BIT_LIMB > -+ size_t step = 19; > -+#else > -+ size_t step = 9; > -+#endif > -+ > -+ // process all integer digits. > -+ UC const *p = num.integer.ptr; > -+ UC const *pend = p + num.integer.len(); > -+ skip_zeros(p, pend); > -+ // process all digits, in increments of step per loop > -+ while (p != pend) { > -+ while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && > -+ (max_digits - digits >= 8)) { > -+ parse_eight_digits(p, value, counter, digits); > -+ } > -+ while (counter < step && p != pend && digits < max_digits) { > -+ parse_one_digit(p, value, counter, digits); > -+ } > -+ if (digits == max_digits) { > -+ // add the temporary value, then check if we've truncated any digits > -+ add_native(result, limb(powers_of_ten_uint64[counter]), value); > -+ bool truncated = is_truncated(p, pend); > -+ if (num.fraction.ptr != nullptr) { > -+ truncated |= is_truncated(num.fraction); > -+ } > -+ if (truncated) { > -+ round_up_bigint(result, digits); > -+ } > -+ return; > -+ } else { > -+ add_native(result, limb(powers_of_ten_uint64[counter]), value); > -+ counter = 0; > -+ value = 0; > -+ } > -+ } > -+ > -+ // add our fraction digits, if they're available. > -+ if (num.fraction.ptr != nullptr) { > -+ p = num.fraction.ptr; > -+ pend = p + num.fraction.len(); > -+ if (digits == 0) { > -+ skip_zeros(p, pend); > -+ } > -+ // process all digits, in increments of step per loop > -+ while (p != pend) { > -+ while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && > -+ (max_digits - digits >= 8)) { > -+ parse_eight_digits(p, value, counter, digits); > -+ } > -+ while (counter < step && p != pend && digits < max_digits) { > -+ parse_one_digit(p, value, counter, digits); > -+ } > -+ if (digits == max_digits) { > -+ // add the temporary value, then check if we've truncated any digits > -+ add_native(result, limb(powers_of_ten_uint64[counter]), value); > -+ bool truncated = is_truncated(p, pend); > -+ if (truncated) { > -+ round_up_bigint(result, digits); > -+ } > -+ return; > -+ } else { > -+ add_native(result, limb(powers_of_ten_uint64[counter]), value); > -+ counter = 0; > -+ value = 0; > -+ } > -+ } > -+ } > -+ > -+ if (counter != 0) { > -+ add_native(result, limb(powers_of_ten_uint64[counter]), value); > -+ } > -+} > -+ > -+template <typename T> > -+inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa > -+positive_digit_comp(bigint &bigmant, int32_t exponent) noexcept { > -+ FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent))); > -+ adjusted_mantissa answer; > -+ bool truncated; > -+ answer.mantissa = bigmant.hi64(truncated); > -+ int bias = binary_format<T>::mantissa_explicit_bits() - > -+ binary_format<T>::minimum_exponent(); > -+ answer.power2 = bigmant.bit_length() - 64 + bias; > -+ > -+ round<T>(answer, [truncated](adjusted_mantissa &a, int32_t shift) { > -+ round_nearest_tie_even( > -+ a, shift, > -+ [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool { > -+ return is_above || (is_halfway && truncated) || > -+ (is_odd && is_halfway); > -+ }); > -+ }); > -+ > -+ return answer; > -+} > -+ > -+// the scaling here is quite simple: we have, for the real digits `m * 10^e`, > -+// and for the theoretical digits `n * 2^f`. Since `e` is always negative, > -+// to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`. > -+// we then need to scale by `2^(f- e)`, and then the two significant digits > -+// are of the same magnitude. > -+template <typename T> > -+inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa negative_digit_comp( > -+ bigint &bigmant, adjusted_mantissa am, int32_t exponent) noexcept { > -+ bigint &real_digits = bigmant; > -+ int32_t real_exp = exponent; > -+ > -+ // get the value of `b`, rounded down, and get a bigint representation of b+h > -+ adjusted_mantissa am_b = am; > -+ // gcc7 buf: use a lambda to remove the noexcept qualifier bug with > -+ // -Wnoexcept-type. > -+ round<T>(am_b, > -+ [](adjusted_mantissa &a, int32_t shift) { round_down(a, shift); }); > -+ T b; > -+ to_float(false, am_b, b); > -+ adjusted_mantissa theor = to_extended_halfway(b); > -+ bigint theor_digits(theor.mantissa); > -+ int32_t theor_exp = theor.power2; > -+ > -+ // scale real digits and theor digits to be same power. > -+ int32_t pow2_exp = theor_exp - real_exp; > -+ uint32_t pow5_exp = uint32_t(-real_exp); > -+ if (pow5_exp != 0) { > -+ FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp)); > -+ } > -+ if (pow2_exp > 0) { > -+ FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp))); > -+ } else if (pow2_exp < 0) { > -+ FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp))); > -+ } > -+ > -+ // compare digits, and use it to director rounding > -+ int ord = real_digits.compare(theor_digits); > -+ adjusted_mantissa answer = am; > -+ round<T>(answer, [ord](adjusted_mantissa &a, int32_t shift) { > -+ round_nearest_tie_even( > -+ a, shift, [ord](bool is_odd, bool _, bool __) -> bool { > -+ (void)_; // not needed, since we've done our comparison > -+ (void)__; // not needed, since we've done our comparison > -+ if (ord > 0) { > -+ return true; > -+ } else if (ord < 0) { > -+ return false; > -+ } else { > -+ return is_odd; > -+ } > -+ }); > -+ }); > -+ > -+ return answer; > -+} > -+ > -+// parse the significant digits as a big integer to unambiguously round the > -+// the significant digits. here, we are trying to determine how to round > -+// an extended float representation close to `b+h`, halfway between `b` > -+// (the float rounded-down) and `b+u`, the next positive float. this > -+// algorithm is always correct, and uses one of two approaches. when > -+// the exponent is positive relative to the significant digits (such as > -+// 1234), we create a big-integer representation, get the high 64-bits, > -+// determine if any lower bits are truncated, and use that to direct > -+// rounding. in case of a negative exponent relative to the significant > -+// digits (such as 1.2345), we create a theoretical representation of > -+// `b` as a big-integer type, scaled to the same binary exponent as > -+// the actual digits. we then compare the big integer representations > -+// of both, and use that to direct rounding. > -+template <typename T, typename UC> > -+inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa > -+digit_comp(parsed_number_string_t<UC> &num, adjusted_mantissa am) noexcept { > -+ // remove the invalid exponent bias > -+ am.power2 -= invalid_am_bias; > -+ > -+ int32_t sci_exp = scientific_exponent(num); > -+ size_t max_digits = binary_format<T>::max_digits(); > -+ size_t digits = 0; > -+ bigint bigmant; > -+ parse_mantissa(bigmant, num, max_digits, digits); > -+ // can't underflow, since digits is at most max_digits. > -+ int32_t exponent = sci_exp + 1 - int32_t(digits); > -+ if (exponent >= 0) { > -+ return positive_digit_comp<T>(bigmant, exponent); > -+ } else { > -+ return negative_digit_comp<T>(bigmant, am, exponent); > -+ } > -+} > -+ > -+} // namespace fast_float > -+ > -+#endif > -+ > -+#ifndef FASTFLOAT_PARSE_NUMBER_H > -+#define FASTFLOAT_PARSE_NUMBER_H > -+ > -+ > -+#include <cmath> > -+#include <cstring> > -+#include <limits> > -+#include <system_error> > -+namespace fast_float { > -+ > -+namespace detail { > -+/** > -+ * Special case +inf, -inf, nan, infinity, -infinity. > -+ * The case comparisons could be made much faster given that we know that the > -+ * strings a null-free and fixed. > -+ **/ > -+template <typename T, typename UC> > -+from_chars_result_t<UC> FASTFLOAT_CONSTEXPR14 parse_infnan(UC const *first, > -+ UC const *last, > -+ T &value) noexcept { > -+ from_chars_result_t<UC> answer{}; > -+ answer.ptr = first; > -+ answer.ec = std::errc(); // be optimistic > -+ bool minusSign = false; > -+ if (*first == > -+ UC('-')) { // assume first < last, so dereference without checks; > -+ // C++17 20.19.3.(7.1) explicitly forbids '+' here > -+ minusSign = true; > -+ ++first; > -+ } > -+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default > -+ if (*first == UC('+')) { > -+ ++first; > -+ } > -+#endif > -+ if (last - first >= 3) { > -+ if (fastfloat_strncasecmp(first, str_const_nan<UC>(), 3)) { > -+ answer.ptr = (first += 3); > -+ value = minusSign ? -std::numeric_limits<T>::quiet_NaN() > -+ : std::numeric_limits<T>::quiet_NaN(); > -+ // Check for possible nan(n-char-seq-opt), C++17 20.19.3.7, > -+ // C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan). > -+ if (first != last && *first == UC('(')) { > -+ for (UC const *ptr = first + 1; ptr != last; ++ptr) { > -+ if (*ptr == UC(')')) { > -+ answer.ptr = ptr + 1; // valid nan(n-char-seq-opt) > -+ break; > -+ } else if (!((UC('a') <= *ptr && *ptr <= UC('z')) || > -+ (UC('A') <= *ptr && *ptr <= UC('Z')) || > -+ (UC('0') <= *ptr && *ptr <= UC('9')) || *ptr == UC('_'))) > -+ break; // forbidden char, not nan(n-char-seq-opt) > -+ } > -+ } > -+ return answer; > -+ } > -+ if (fastfloat_strncasecmp(first, str_const_inf<UC>(), 3)) { > -+ if ((last - first >= 8) && > -+ fastfloat_strncasecmp(first + 3, str_const_inf<UC>() + 3, 5)) { > -+ answer.ptr = first + 8; > -+ } else { > -+ answer.ptr = first + 3; > -+ } > -+ value = minusSign ? -std::numeric_limits<T>::infinity() > -+ : std::numeric_limits<T>::infinity(); > -+ return answer; > -+ } > -+ } > -+ answer.ec = std::errc::invalid_argument; > -+ return answer; > -+} > -+ > -+/** > -+ * Returns true if the floating-pointing rounding mode is to 'nearest'. > -+ * It is the default on most system. This function is meant to be inexpensive. > -+ * Credit : @mwalcott3 > -+ */ > -+fastfloat_really_inline bool rounds_to_nearest() noexcept { > -+ // https://lemire.me/blog/2020/06/26/gcc-not-nearest/ > -+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) > -+ return false; > -+#endif > -+ // See > -+ // A fast function to check your floating-point rounding mode > -+ // https://lemire.me/blog/2022/11/16/a-fast-function-to-check-your-floating-point-rounding-mode/ > -+ // > -+ // This function is meant to be equivalent to : > -+ // prior: #include <cfenv> > -+ // return fegetround() == FE_TONEAREST; > -+ // However, it is expected to be much faster than the fegetround() > -+ // function call. > -+ // > -+ // The volatile keywoard prevents the compiler from computing the function > -+ // at compile-time. > -+ // There might be other ways to prevent compile-time optimizations (e.g., > -+ // asm). The value does not need to be std::numeric_limits<float>::min(), any > -+ // small value so that 1 + x should round to 1 would do (after accounting for > -+ // excess precision, as in 387 instructions). > -+ static volatile float fmin = std::numeric_limits<float>::min(); > -+ float fmini = fmin; // we copy it so that it gets loaded at most once. > -+// > -+// Explanation: > -+// Only when fegetround() == FE_TONEAREST do we have that > -+// fmin + 1.0f == 1.0f - fmin. > -+// > -+// FE_UPWARD: > -+// fmin + 1.0f > 1 > -+// 1.0f - fmin == 1 > -+// > -+// FE_DOWNWARD or FE_TOWARDZERO: > -+// fmin + 1.0f == 1 > -+// 1.0f - fmin < 1 > -+// > -+// Note: This may fail to be accurate if fast-math has been > -+// enabled, as rounding conventions may not apply. > -+#ifdef FASTFLOAT_VISUAL_STUDIO > -+#pragma warning(push) > -+// todo: is there a VS warning? > -+// see > -+// https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013 > -+#elif defined(__clang__) > -+#pragma clang diagnostic push > -+#pragma clang diagnostic ignored "-Wfloat-equal" > -+#elif defined(__GNUC__) > -+#pragma GCC diagnostic push > -+#pragma GCC diagnostic ignored "-Wfloat-equal" > -+#endif > -+ return (fmini + 1.0f == 1.0f - fmini); > -+#ifdef FASTFLOAT_VISUAL_STUDIO > -+#pragma warning(pop) > -+#elif defined(__clang__) > -+#pragma clang diagnostic pop > -+#elif defined(__GNUC__) > -+#pragma GCC diagnostic pop > -+#endif > -+} > -+ > -+} // namespace detail > -+ > -+template <typename T> struct from_chars_caller { > -+ template <typename UC> > -+ FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC> > -+ call(UC const *first, UC const *last, T &value, > -+ parse_options_t<UC> options) noexcept { > -+ return from_chars_advanced(first, last, value, options); > -+ } > -+}; > -+ > -+#if __STDCPP_FLOAT32_T__ == 1 > -+template <> struct from_chars_caller<std::float32_t> { > -+ template <typename UC> > -+ FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC> > -+ call(UC const *first, UC const *last, std::float32_t &value, > -+ parse_options_t<UC> options) noexcept { > -+ // if std::float32_t is defined, and we are in C++23 mode; macro set for > -+ // float32; set value to float due to equivalence between float and > -+ // float32_t > -+ float val; > -+ auto ret = from_chars_advanced(first, last, val, options); > -+ value = val; > -+ return ret; > -+ } > -+}; > -+#endif > -+ > -+#if __STDCPP_FLOAT64_T__ == 1 > -+template <> struct from_chars_caller<std::float64_t> { > -+ template <typename UC> > -+ FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC> > -+ call(UC const *first, UC const *last, std::float64_t &value, > -+ parse_options_t<UC> options) noexcept { > -+ // if std::float64_t is defined, and we are in C++23 mode; macro set for > -+ // float64; set value as double due to equivalence between double and > -+ // float64_t > -+ double val; > -+ auto ret = from_chars_advanced(first, last, val, options); > -+ value = val; > -+ return ret; > -+ } > -+}; > -+#endif > -+ > -+template <typename T, typename UC, typename> > -+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> > -+from_chars(UC const *first, UC const *last, T &value, > -+ chars_format fmt /*= chars_format::general*/) noexcept { > -+ return from_chars_caller<T>::call(first, last, value, > -+ parse_options_t<UC>(fmt)); > -+} > -+ > -+/** > -+ * This function overload takes parsed_number_string_t structure that is created > -+ * and populated either by from_chars_advanced function taking chars range and > -+ * parsing options or other parsing custom function implemented by user. > -+ */ > -+template <typename T, typename UC> > -+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> > -+from_chars_advanced(parsed_number_string_t<UC> &pns, T &value) noexcept { > -+ > -+ static_assert(is_supported_float_type<T>(), > -+ "only some floating-point types are supported"); > -+ static_assert(is_supported_char_type<UC>(), > -+ "only char, wchar_t, char16_t and char32_t are supported"); > -+ > -+ from_chars_result_t<UC> answer; > -+ > -+ answer.ec = std::errc(); // be optimistic > -+ answer.ptr = pns.lastmatch; > -+ // The implementation of the Clinger's fast path is convoluted because > -+ // we want round-to-nearest in all cases, irrespective of the rounding mode > -+ // selected on the thread. > -+ // We proceed optimistically, assuming that detail::rounds_to_nearest() > -+ // returns true. > -+ if (binary_format<T>::min_exponent_fast_path() <= pns.exponent && > -+ pns.exponent <= binary_format<T>::max_exponent_fast_path() && > -+ !pns.too_many_digits) { > -+ // Unfortunately, the conventional Clinger's fast path is only possible > -+ // when the system rounds to the nearest float. > -+ // > -+ // We expect the next branch to almost always be selected. > -+ // We could check it first (before the previous branch), but > -+ // there might be performance advantages at having the check > -+ // be last. > -+ if (!cpp20_and_in_constexpr() && detail::rounds_to_nearest()) { > -+ // We have that fegetround() == FE_TONEAREST. > -+ // Next is Clinger's fast path. > -+ if (pns.mantissa <= binary_format<T>::max_mantissa_fast_path()) { > -+ value = T(pns.mantissa); > -+ if (pns.exponent < 0) { > -+ value = value / binary_format<T>::exact_power_of_ten(-pns.exponent); > -+ } else { > -+ value = value * binary_format<T>::exact_power_of_ten(pns.exponent); > -+ } > -+ if (pns.negative) { > -+ value = -value; > -+ } > -+ return answer; > -+ } > -+ } else { > -+ // We do not have that fegetround() == FE_TONEAREST. > -+ // Next is a modified Clinger's fast path, inspired by Jakub Jelínek's > -+ // proposal > -+ if (pns.exponent >= 0 && > -+ pns.mantissa <= > -+ binary_format<T>::max_mantissa_fast_path(pns.exponent)) { > -+#if defined(__clang__) || defined(FASTFLOAT_32BIT) > -+ // Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD > -+ if (pns.mantissa == 0) { > -+ value = pns.negative ? T(-0.) : T(0.); > -+ return answer; > -+ } > -+#endif > -+ value = T(pns.mantissa) * > -+ binary_format<T>::exact_power_of_ten(pns.exponent); > -+ if (pns.negative) { > -+ value = -value; > -+ } > -+ return answer; > -+ } > -+ } > -+ } > -+ adjusted_mantissa am = > -+ compute_float<binary_format<T>>(pns.exponent, pns.mantissa); > -+ if (pns.too_many_digits && am.power2 >= 0) { > -+ if (am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) { > -+ am = compute_error<binary_format<T>>(pns.exponent, pns.mantissa); > -+ } > -+ } > -+ // If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa) > -+ // and we have an invalid power (am.power2 < 0), then we need to go the long > -+ // way around again. This is very uncommon. > -+ if (am.power2 < 0) { > -+ am = digit_comp<T>(pns, am); > -+ } > -+ to_float(pns.negative, am, value); > -+ // Test for over/underflow. > -+ if ((pns.mantissa != 0 && am.mantissa == 0 && am.power2 == 0) || > -+ am.power2 == binary_format<T>::infinite_power()) { > -+ answer.ec = std::errc::result_out_of_range; > -+ } > -+ return answer; > -+} > -+ > -+template <typename T, typename UC> > -+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> > -+from_chars_advanced(UC const *first, UC const *last, T &value, > -+ parse_options_t<UC> options) noexcept { > -+ > -+ static_assert(is_supported_float_type<T>(), > -+ "only some floating-point types are supported"); > -+ static_assert(is_supported_char_type<UC>(), > -+ "only char, wchar_t, char16_t and char32_t are supported"); > -+ > -+ from_chars_result_t<UC> answer; > -+#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default > -+ while ((first != last) && fast_float::is_space(uint8_t(*first))) { > -+ first++; > -+ } > -+#endif > -+ if (first == last) { > -+ answer.ec = std::errc::invalid_argument; > -+ answer.ptr = first; > -+ return answer; > -+ } > -+ parsed_number_string_t<UC> pns = > -+ parse_number_string<UC>(first, last, options); > -+ if (!pns.valid) { > -+ if (options.format & chars_format::no_infnan) { > -+ answer.ec = std::errc::invalid_argument; > -+ answer.ptr = first; > -+ return answer; > -+ } else { > -+ return detail::parse_infnan(first, last, value); > -+ } > -+ } > -+ > -+ // call overload that takes parsed_number_string_t directly. > -+ return from_chars_advanced(pns, value); > -+} > -+ > -+template <typename T, typename UC, typename> > -+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> > -+from_chars(UC const *first, UC const *last, T &value, int base) noexcept { > -+ static_assert(is_supported_char_type<UC>(), > -+ "only char, wchar_t, char16_t and char32_t are supported"); > -+ > -+ from_chars_result_t<UC> answer; > -+#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default > -+ while ((first != last) && fast_float::is_space(uint8_t(*first))) { > -+ first++; > -+ } > -+#endif > -+ if (first == last || base < 2 || base > 36) { > -+ answer.ec = std::errc::invalid_argument; > -+ answer.ptr = first; > -+ return answer; > -+ } > -+ return parse_int_string(first, last, value, base); > -+} > -+ > -+} // namespace fast_float > -+ > -+#endif > -+ > diff --git a/meta/recipes-support/vte/vte/0005-color-parser-Use-fast_float-implementation-for-from_.patch b/meta/recipes-support/vte/vte/0005-color-parser-Use-fast_float-implementation-for-from_.patch > deleted file mode 100644 > index b951bbac18..0000000000 > --- a/meta/recipes-support/vte/vte/0005-color-parser-Use-fast_float-implementation-for-from_.patch > +++ /dev/null > @@ -1,102 +0,0 @@ > -From 08b90d0a5bf8ceb68dd1b4e9ded0f8a2b5287a6e Mon Sep 17 00:00:00 2001 > -From: Khem Raj <raj.khem@gmail.com> > -Date: Fri, 4 Oct 2024 21:22:52 -0700 > -Subject: [PATCH 5/5] color-parser: Use fast_float implementation for > - from_chars > - > -Removed dependency on c++ runtime to provide it. > - > -Fixes: https://gitlab.gnome.org/GNOME/vte/-/issues/2823 > - > -Upstream-Status: Submitted [https://gitlab.gnome.org/GNOME/vte/-/issues/2823#note_2239888] > -Signed-off-by: Khem Raj <raj.khem@gmail.com> > ---- > - src/color-parser.cc | 12 ++++++------ > - src/termprops.hh | 12 ++++++------ > - 2 files changed, 12 insertions(+), 12 deletions(-) > - > -diff --git a/src/color-parser.cc b/src/color-parser.cc > -index 02ec5d3a..42c51966 100644 > ---- a/src/color-parser.cc > -+++ b/src/color-parser.cc > -@@ -17,7 +17,7 @@ > - > - #include "color-parser.hh" > - #include "color.hh" > -- > -+#include "fast_float.hh" > - #include <algorithm> > - #include <cctype> > - #include <charconv> > -@@ -298,7 +298,7 @@ parse_csslike(std::string const& spec) noexcept > - auto value = uint64_t{}; > - auto const start = spec.c_str() + 1; > - auto const end = spec.c_str() + spec.size(); > -- auto const rv = std::from_chars(start, end, value, 16); > -+ auto const rv = fast_float::from_chars(start, end, value, 16); > - if (rv.ec != std::errc{} || rv.ptr != end) > - return std::nullopt; > - > -@@ -424,7 +424,7 @@ parse_x11like(std::string const& spec) noexcept > - auto value = uint64_t{}; > - auto const start = spec.c_str() + 1; > - auto const end = spec.c_str() + spec.size(); > -- auto const rv = std::from_chars(start, end, value, 16); > -+ auto const rv = fast_float::from_chars(start, end, value, 16); > - if (rv.ec != std::errc{} || rv.ptr != end) > - return std::nullopt; > - > -@@ -447,13 +447,13 @@ parse_x11like(std::string const& spec) noexcept > - // Note that the length check above makes sure that @r, @g, @b, > - // don't exceed @bits. > - auto r = UINT64_C(0), b = UINT64_C(0), g = UINT64_C(0); > -- auto rv = std::from_chars(start, end, r, 16); > -+ auto rv = fast_float::from_chars(start, end, r, 16); > - if (rv.ec != std::errc{} || rv.ptr == end || *rv.ptr != '/') > - return std::nullopt; > -- rv = std::from_chars(rv.ptr + 1, end, g, 16); > -+ rv = fast_float::from_chars(rv.ptr + 1, end, g, 16); > - if (rv.ec != std::errc{} || rv.ptr == end || *rv.ptr != '/') > - return std::nullopt; > -- rv = std::from_chars(rv.ptr + 1, end, b, 16); > -+ rv = fast_float::from_chars(rv.ptr + 1, end, b, 16); > - if (rv.ec != std::errc{} || rv.ptr != end) > - return std::nullopt; > - > -diff --git a/src/termprops.hh b/src/termprops.hh > -index 0d3f0f4c..a10fc7d1 100644 > ---- a/src/termprops.hh > -+++ b/src/termprops.hh > -@@ -17,6 +17,7 @@ > - > - #include <glib.h> > - > -+#include "fast_float.hh" > - #include "fwd.hh" > - #include "uuid.hh" > - #include "color.hh" > -@@ -355,8 +356,8 @@ inline std::optional<TermpropValue> > - parse_termprop_integral(std::string_view const& str) noexcept > - { > - auto v = T{}; > -- if (auto [ptr, err] = std::from_chars(std::begin(str), > -- std::end(str), > -+ if (auto [ptr, err] = fast_float::from_chars(str.data(), > -+ str.data()+str.size(), > - v); > - err == std::errc() && ptr == std::end(str)) { > - if constexpr (std::is_unsigned_v<T>) { > -@@ -389,10 +390,9 @@ inline std::optional<TermpropValue> > - parse_termprop_floating(std::string_view const& str) noexcept > - { > - auto v = T{}; > -- if (auto [ptr, err] = std::from_chars(std::begin(str), > -- std::end(str), > -- v, > -- std::chars_format::general); > -+ if (auto [ptr, err] = fast_float::from_chars(str.data(), > -+ str.data() + str.size(), > -+ v); > - err == std::errc() && > - ptr == std::end(str) && > - std::isfinite(v)) { > diff --git a/meta/recipes-support/vte/vte_0.78.2.bb b/meta/recipes-support/vte/vte_0.80.3.bb > similarity index 82% > rename from meta/recipes-support/vte/vte_0.78.2.bb > rename to meta/recipes-support/vte/vte_0.80.3.bb > index 0593d16cd8..1eb95dd827 100644 > --- a/meta/recipes-support/vte/vte_0.78.2.bb > +++ b/meta/recipes-support/vte/vte_0.80.3.bb > @@ -11,18 +11,15 @@ LIC_FILES_CHKSUM = " \ > file://COPYING.XTERM;md5=d7fc3a23c16c039afafe2e042030f057 \ > " > > -DEPENDS = "glib-2.0 glib-2.0-native gtk+3 libpcre2 libxml2-native gperf-native icu lz4" > +DEPENDS = "fastfloat glib-2.0 glib-2.0-native gtk+3 libpcre2 libxml2-native gperf-native icu lz4" > > GIR_MESON_OPTION = 'gir' > GIDOCGEN_MESON_OPTION = "docs" > inherit gnomebase gi-docgen features_check upstream-version-is-even gobject-introspection systemd vala > > -SRC_URI += "file://0001-Add-W_EXITCODE-macro-for-non-glibc-systems.patch \ > - file://0002-lib-Typo-fix.patch \ > - file://0004-fast_float-Add-single-header-library-for-from_char-i.patch \ > - file://0005-color-parser-Use-fast_float-implementation-for-from_.patch \ > - " > -SRC_URI[archive.sha256sum] = "35d7bcde07356846b4a12881c8e016705b70a9004a9082285eee5834ccc49890" > +SRC_URI += "file://0001-Add-W_EXITCODE-macro-for-non-glibc-systems.patch" > + > +SRC_URI[archive.sha256sum] = "2e596fd3fbeabb71531662224e71f6a2c37f684426136d62854627276ef4f699" > > ANY_OF_DISTRO_FEATURES = "${GTK3DISTROFEATURES}" > > @@ -49,7 +46,8 @@ FILES:${PN}-gtk4-dev = "${libdir}/lib*gtk4.so \ > ${datadir}/vala/vapi/vte-2.91-gtk4.vapi \ > ${includedir}/vte-2.91-gtk4 \ > " > -FILES:${PN} += "${systemd_user_unitdir}" > +FILES:${PN} += "${systemd_user_unitdir} \ > + ${datadir}/xdg-terminals" > FILES:libvte = "${libdir}/*.so.* ${libdir}/girepository-1.0/*" > FILES:${PN}-prompt = " \ > ${sysconfdir}/profile.d \ > -- > 2.49.0 > > > -=-=-=-=-=-=-=-=-=-=-=- > Links: You receive all messages sent to this group. > View/Reply Online (#222738): https://lists.openembedded.org/g/openembedded-core/message/222738 > Mute This Topic: https://lists.openembedded.org/mt/115028533/1686489 > Group Owner: openembedded-core+owner@lists.openembedded.org > Unsubscribe: https://lists.openembedded.org/g/openembedded-core/unsub [alex.kanavin@gmail.com] > -=-=-=-=-=-=-=-=-=-=-=- >
Please disregard this.... it was git-send-email user error because I adding -M 1 from the README.md Regards, Rob On Tue, Sep 2, 2025 at 11:39 AM Rob Woolley via lists.openembedded.org <rob.woolley=windriver.com@lists.openembedded.org> wrote: > From: Gyorgy Sarvari <skandigraun@gmail.com> > > 0004-fast_float-Add-single-header-library-for-from_char-i.patch > and 0005-color-parser-Use-fast_float-implementation-for-from_.patch > patches dropped: upstream has adopted the changes, and oe-core also > provides now fastfloat, no need to vendor it with a patch. > > 0002-lib-Typo-fix.patch is dropped, because it was a backport, and > it is included in this release. > > Shortlog: https://gitlab.gnome.org/GNOME/vte/-/compare/0.80.3...0.78.2 > > Signed-off-by: Gyorgy Sarvari <skandigraun@gmail.com> > Signed-off-by: Mathieu Dubois-Briand <mathieu.dubois-briand@bootlin.com> > Signed-off-by: Richard Purdie <richard.purdie@linuxfoundation.org> > --- > .../vte/vte/0002-lib-Typo-fix.patch | 25 - > ...ingle-header-library-for-from_char-i.patch | 3922 ----------------- > ...-fast_float-implementation-for-from_.patch | 102 - > .../vte/{vte_0.78.2.bb => vte_0.80.3.bb} | 14 +- > 4 files changed, 6 insertions(+), 4057 deletions(-) > delete mode 100644 meta/recipes-support/vte/vte/0002-lib-Typo-fix.patch > delete mode 100644 > meta/recipes-support/vte/vte/0004-fast_float-Add-single-header-library-for-from_char-i.patch > delete mode 100644 > meta/recipes-support/vte/vte/0005-color-parser-Use-fast_float-implementation-for-from_.patch > rename meta/recipes-support/vte/{vte_0.78.2.bb => vte_0.80.3.bb} (82%) > > diff --git a/meta/recipes-support/vte/vte/0002-lib-Typo-fix.patch > b/meta/recipes-support/vte/vte/0002-lib-Typo-fix.patch > deleted file mode 100644 > index 410d506806..0000000000 > --- a/meta/recipes-support/vte/vte/0002-lib-Typo-fix.patch > +++ /dev/null > @@ -1,25 +0,0 @@ > -From 6b7440996819c12ec32bfaf4e73b27baeb273207 Mon Sep 17 00:00:00 2001 > -From: Christian Persch <chpe@src.gnome.org> > -Date: Thu, 5 Sep 2024 23:59:05 +0200 > -Subject: [PATCH 2/3] lib: Typo fix > - > -Fixes: https://gitlab.gnome.org/GNOME/vte/-/issues/2816 > -Upstream-Status: Backport [ > https://gitlab.gnome.org/GNOME/vte/-/commit/e24087d953d9352c8bc46074e2662c80f9bfbc2d > ] > -Signed-off-by: Khem Raj <raj.khem@gmail.com> > ---- > - src/vteinternal.hh | 2 +- > - 1 file changed, 1 insertion(+), 1 deletion(-) > - > -diff --git a/src/vteinternal.hh b/src/vteinternal.hh > -index 051e78c..b1adc19 100644 > ---- a/src/vteinternal.hh > -+++ b/src/vteinternal.hh > -@@ -1233,7 +1233,7 @@ public: > - void reset_decoder(); > - > - void feed(std::string_view const& data, > -- bool start_processsing_ = true); > -+ bool start_processing_ = true); > - void feed_child(char const* data, > - size_t length) { assert(data); feed_child({data, > length}); } > - void feed_child(std::string_view const& str); > diff --git > a/meta/recipes-support/vte/vte/0004-fast_float-Add-single-header-library-for-from_char-i.patch > b/meta/recipes-support/vte/vte/0004-fast_float-Add-single-header-library-for-from_char-i.patch > deleted file mode 100644 > index 731dba729d..0000000000 > --- > a/meta/recipes-support/vte/vte/0004-fast_float-Add-single-header-library-for-from_char-i.patch > +++ /dev/null > @@ -1,3922 +0,0 @@ > -From 2a32e43e43b04771a3357d3d4ccbafa7714e0114 Mon Sep 17 00:00:00 2001 > -From: Khem Raj <raj.khem@gmail.com> > -Date: Fri, 4 Oct 2024 21:21:11 -0700 > -Subject: [PATCH 4/5] fast_float: Add single header library for from_char > - implementation > - > -Document the process to re-generate the file whenever new release > -is made for fast_float upstream. > - > -This would make it work with llvm libc++ > - > -Upstream-Status: Submitted [ > https://gitlab.gnome.org/GNOME/vte/-/issues/2823#note_2239888] > -Signed-off-by: Khem Raj <raj.khem@gmail.com> > ---- > - README.md | 17 + > - src/fast_float.hh | 3869 +++++++++++++++++++++++++++++++++++++++++++++ > - 2 files changed, 3886 insertions(+) > - create mode 100644 src/fast_float.hh > - > -diff --git a/README.md b/README.md > -index a32465a9..20ed5ba2 100644 > ---- a/README.md > -+++ b/README.md > -@@ -21,6 +21,23 @@ on download.gnome.org, but please note that any > tarball for releases > - after 0.60.3 were made by either the gnome release team or other > - gnome contributors, but not by a VTE maintainer. > - > -+fast_float library[1] is used to provide from_chars implementation for > faster > -+and more portable parsing of 64 decimal strings. > -+ > -+fast_float.hh is an amalgamation of the entire library, > -+which can be regenerated by using amalgamate.py script provided by > -+fast_float repository. Following command can be used to re-generate the > -+header file > -+ > -+``` > -+git clone https://github.com/fastfloat/fast_float > -+cd fast_float > -+git checkout v6.1.6 > -+python3 ./script/amalgamate.py --license=MIT > $VTE_SRC/src/fast_float.hh > -+``` > -+ > -+[1]: https://github.com/fastfloat/fast_float > -+ > - Installation > - ------------ > - > -diff --git a/src/fast_float.hh b/src/fast_float.hh > -new file mode 100644 > -index 00000000..e0d5dd53 > ---- /dev/null > -+++ b/src/fast_float.hh > -@@ -0,0 +1,3869 @@ > -+// fast_float by Daniel Lemire > -+// fast_float by João Paulo Magalhaes > -+// > -+// > -+// with contributions from Eugene Golushkov > -+// with contributions from Maksim Kita > -+// with contributions from Marcin Wojdyr > -+// with contributions from Neal Richardson > -+// with contributions from Tim Paine > -+// with contributions from Fabio Pellacini > -+// with contributions from Lénárd Szolnoki > -+// with contributions from Jan Pharago > -+// with contributions from Maya Warrier > -+// with contributions from Taha Khokhar > -+// > -+// > -+// MIT License Notice > -+// > -+// MIT License > -+// > -+// Copyright (c) 2021 The fast_float authors > -+// > -+// Permission is hereby granted, free of charge, to any > -+// person obtaining a copy of this software and associated > -+// documentation files (the "Software"), to deal in the > -+// Software without restriction, including without > -+// limitation the rights to use, copy, modify, merge, > -+// publish, distribute, sublicense, and/or sell copies of > -+// the Software, and to permit persons to whom the Software > -+// is furnished to do so, subject to the following > -+// conditions: > -+// > -+// The above copyright notice and this permission notice > -+// shall be included in all copies or substantial portions > -+// of the Software. > -+// > -+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF > -+// ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED > -+// TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A > -+// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT > -+// SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY > -+// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION > -+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR > -+// IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER > -+// DEALINGS IN THE SOFTWARE. > -+// > -+ > -+#ifndef FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H > -+#define FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H > -+ > -+#ifdef __has_include > -+#if __has_include(<version>) > -+#include <version> > -+#endif > -+#endif > -+ > -+// Testing for https://wg21.link/N3652, adopted in C++14 > -+#if __cpp_constexpr >= 201304 > -+#define FASTFLOAT_CONSTEXPR14 constexpr > -+#else > -+#define FASTFLOAT_CONSTEXPR14 > -+#endif > -+ > -+#if defined(__cpp_lib_bit_cast) && __cpp_lib_bit_cast >= 201806L > -+#define FASTFLOAT_HAS_BIT_CAST 1 > -+#else > -+#define FASTFLOAT_HAS_BIT_CAST 0 > -+#endif > -+ > -+#if defined(__cpp_lib_is_constant_evaluated) && > \ > -+ __cpp_lib_is_constant_evaluated >= 201811L > -+#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 1 > -+#else > -+#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 0 > -+#endif > -+ > -+// Testing for relevant C++20 constexpr library features > -+#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED && FASTFLOAT_HAS_BIT_CAST && > \ > -+ __cpp_lib_constexpr_algorithms >= 201806L /*For std::copy and > std::fill*/ > -+#define FASTFLOAT_CONSTEXPR20 constexpr > -+#define FASTFLOAT_IS_CONSTEXPR 1 > -+#else > -+#define FASTFLOAT_CONSTEXPR20 > -+#define FASTFLOAT_IS_CONSTEXPR 0 > -+#endif > -+ > -+#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= > 201703L) > -+#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 0 > -+#else > -+#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 1 > -+#endif > -+ > -+#endif // FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H > -+ > -+#ifndef FASTFLOAT_FLOAT_COMMON_H > -+#define FASTFLOAT_FLOAT_COMMON_H > -+ > -+#include <cfloat> > -+#include <cstdint> > -+#include <cassert> > -+#include <cstring> > -+#include <type_traits> > -+#include <system_error> > -+#ifdef __has_include > -+#if __has_include(<stdfloat>) && (__cplusplus > 202002L || _MSVC_LANG > > 202002L) > -+#include <stdfloat> > -+#endif > -+#endif > -+ > -+namespace fast_float { > -+ > -+#define FASTFLOAT_JSONFMT (1 << 5) > -+#define FASTFLOAT_FORTRANFMT (1 << 6) > -+ > -+enum chars_format { > -+ scientific = 1 << 0, > -+ fixed = 1 << 2, > -+ hex = 1 << 3, > -+ no_infnan = 1 << 4, > -+ // RFC 8259: https://datatracker.ietf.org/doc/html/rfc8259#section-6 > -+ json = FASTFLOAT_JSONFMT | fixed | scientific | no_infnan, > -+ // Extension of RFC 8259 where, e.g., "inf" and "nan" are allowed. > -+ json_or_infnan = FASTFLOAT_JSONFMT | fixed | scientific, > -+ fortran = FASTFLOAT_FORTRANFMT | fixed | scientific, > -+ general = fixed | scientific > -+}; > -+ > -+template <typename UC> struct from_chars_result_t { > -+ UC const *ptr; > -+ std::errc ec; > -+}; > -+using from_chars_result = from_chars_result_t<char>; > -+ > -+template <typename UC> struct parse_options_t { > -+ constexpr explicit parse_options_t(chars_format fmt = > chars_format::general, > -+ UC dot = UC('.')) > -+ : format(fmt), decimal_point(dot) {} > -+ > -+ /** Which number formats are accepted */ > -+ chars_format format; > -+ /** The character used as decimal point */ > -+ UC decimal_point; > -+}; > -+using parse_options = parse_options_t<char>; > -+ > -+} // namespace fast_float > -+ > -+#if FASTFLOAT_HAS_BIT_CAST > -+#include <bit> > -+#endif > -+ > -+#if (defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || > \ > -+ defined(__amd64) || defined(__aarch64__) || defined(_M_ARM64) || > \ > -+ defined(__MINGW64__) || defined(__s390x__) || > \ > -+ (defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) > || \ > -+ defined(__PPC64LE__)) || > \ > -+ defined(__loongarch64)) > -+#define FASTFLOAT_64BIT 1 > -+#elif (defined(__i386) || defined(__i386__) || defined(_M_IX86) || > \ > -+ defined(__arm__) || defined(_M_ARM) || defined(__ppc__) || > \ > -+ defined(__MINGW32__) || defined(__EMSCRIPTEN__)) > -+#define FASTFLOAT_32BIT 1 > -+#else > -+ // Need to check incrementally, since SIZE_MAX is a size_t, avoid > overflow. > -+// We can never tell the register width, but the SIZE_MAX is a good > -+// approximation. UINTPTR_MAX and INTPTR_MAX are optional, so avoid them > for max > -+// portability. > -+#if SIZE_MAX == 0xffff > -+#error Unknown platform (16-bit, unsupported) > -+#elif SIZE_MAX == 0xffffffff > -+#define FASTFLOAT_32BIT 1 > -+#elif SIZE_MAX == 0xffffffffffffffff > -+#define FASTFLOAT_64BIT 1 > -+#else > -+#error Unknown platform (not 32-bit, not 64-bit?) > -+#endif > -+#endif > -+ > -+#if ((defined(_WIN32) || defined(_WIN64)) && !defined(__clang__)) || > \ > -+ (defined(_M_ARM64) && !defined(__MINGW32__)) > -+#include <intrin.h> > -+#endif > -+ > -+#if defined(_MSC_VER) && !defined(__clang__) > -+#define FASTFLOAT_VISUAL_STUDIO 1 > -+#endif > -+ > -+#if defined __BYTE_ORDER__ && defined __ORDER_BIG_ENDIAN__ > -+#define FASTFLOAT_IS_BIG_ENDIAN (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) > -+#elif defined _WIN32 > -+#define FASTFLOAT_IS_BIG_ENDIAN 0 > -+#else > -+#if defined(__APPLE__) || defined(__FreeBSD__) > -+#include <machine/endian.h> > -+#elif defined(sun) || defined(__sun) > -+#include <sys/byteorder.h> > -+#elif defined(__MVS__) > -+#include <sys/endian.h> > -+#else > -+#ifdef __has_include > -+#if __has_include(<endian.h>) > -+#include <endian.h> > -+#endif //__has_include(<endian.h>) > -+#endif //__has_include > -+#endif > -+# > -+#ifndef __BYTE_ORDER__ > -+// safe choice > -+#define FASTFLOAT_IS_BIG_ENDIAN 0 > -+#endif > -+# > -+#ifndef __ORDER_LITTLE_ENDIAN__ > -+// safe choice > -+#define FASTFLOAT_IS_BIG_ENDIAN 0 > -+#endif > -+# > -+#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ > -+#define FASTFLOAT_IS_BIG_ENDIAN 0 > -+#else > -+#define FASTFLOAT_IS_BIG_ENDIAN 1 > -+#endif > -+#endif > -+ > -+#if defined(__SSE2__) || (defined(FASTFLOAT_VISUAL_STUDIO) && > \ > -+ (defined(_M_AMD64) || defined(_M_X64) || > \ > -+ (defined(_M_IX86_FP) && _M_IX86_FP == 2))) > -+#define FASTFLOAT_SSE2 1 > -+#endif > -+ > -+#if defined(__aarch64__) || defined(_M_ARM64) > -+#define FASTFLOAT_NEON 1 > -+#endif > -+ > -+#if defined(FASTFLOAT_SSE2) || defined(FASTFLOAT_NEON) > -+#define FASTFLOAT_HAS_SIMD 1 > -+#endif > -+ > -+#if defined(__GNUC__) > -+// disable -Wcast-align=strict (GCC only) > -+#define FASTFLOAT_SIMD_DISABLE_WARNINGS > \ > -+ _Pragma("GCC diagnostic push") > \ > -+ _Pragma("GCC diagnostic ignored \"-Wcast-align\"") > -+#else > -+#define FASTFLOAT_SIMD_DISABLE_WARNINGS > -+#endif > -+ > -+#if defined(__GNUC__) > -+#define FASTFLOAT_SIMD_RESTORE_WARNINGS _Pragma("GCC diagnostic pop") > -+#else > -+#define FASTFLOAT_SIMD_RESTORE_WARNINGS > -+#endif > -+ > -+#ifdef FASTFLOAT_VISUAL_STUDIO > -+#define fastfloat_really_inline __forceinline > -+#else > -+#define fastfloat_really_inline inline __attribute__((always_inline)) > -+#endif > -+ > -+#ifndef FASTFLOAT_ASSERT > -+#define FASTFLOAT_ASSERT(x) > \ > -+ { ((void)(x)); } > -+#endif > -+ > -+#ifndef FASTFLOAT_DEBUG_ASSERT > -+#define FASTFLOAT_DEBUG_ASSERT(x) > \ > -+ { ((void)(x)); } > -+#endif > -+ > -+// rust style `try!()` macro, or `?` operator > -+#define FASTFLOAT_TRY(x) > \ > -+ { > \ > -+ if (!(x)) > \ > -+ return false; > \ > -+ } > -+ > -+#define FASTFLOAT_ENABLE_IF(...) > \ > -+ typename std::enable_if<(__VA_ARGS__), int>::type > -+ > -+namespace fast_float { > -+ > -+fastfloat_really_inline constexpr bool cpp20_and_in_constexpr() { > -+#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED > -+ return std::is_constant_evaluated(); > -+#else > -+ return false; > -+#endif > -+} > -+ > -+template <typename T> > -+fastfloat_really_inline constexpr bool is_supported_float_type() { > -+ return std::is_same<T, float>::value || std::is_same<T, double>::value > -+#if __STDCPP_FLOAT32_T__ > -+ || std::is_same<T, std::float32_t>::value > -+#endif > -+#if __STDCPP_FLOAT64_T__ > -+ || std::is_same<T, std::float64_t>::value > -+#endif > -+ ; > -+} > -+ > -+template <typename UC> > -+fastfloat_really_inline constexpr bool is_supported_char_type() { > -+ return std::is_same<UC, char>::value || std::is_same<UC, > wchar_t>::value || > -+ std::is_same<UC, char16_t>::value || std::is_same<UC, > char32_t>::value; > -+} > -+ > -+// Compares two ASCII strings in a case insensitive manner. > -+template <typename UC> > -+inline FASTFLOAT_CONSTEXPR14 bool > -+fastfloat_strncasecmp(UC const *input1, UC const *input2, size_t length) > { > -+ char running_diff{0}; > -+ for (size_t i = 0; i < length; ++i) { > -+ running_diff |= (char(input1[i]) ^ char(input2[i])); > -+ } > -+ return (running_diff == 0) || (running_diff == 32); > -+} > -+ > -+#ifndef FLT_EVAL_METHOD > -+#error "FLT_EVAL_METHOD should be defined, please include cfloat." > -+#endif > -+ > -+// a pointer and a length to a contiguous block of memory > -+template <typename T> struct span { > -+ const T *ptr; > -+ size_t length; > -+ constexpr span(const T *_ptr, size_t _length) : ptr(_ptr), > length(_length) {} > -+ constexpr span() : ptr(nullptr), length(0) {} > -+ > -+ constexpr size_t len() const noexcept { return length; } > -+ > -+ FASTFLOAT_CONSTEXPR14 const T &operator[](size_t index) const noexcept > { > -+ FASTFLOAT_DEBUG_ASSERT(index < length); > -+ return ptr[index]; > -+ } > -+}; > -+ > -+struct value128 { > -+ uint64_t low; > -+ uint64_t high; > -+ constexpr value128(uint64_t _low, uint64_t _high) : low(_low), > high(_high) {} > -+ constexpr value128() : low(0), high(0) {} > -+}; > -+ > -+/* Helper C++14 constexpr generic implementation of leading_zeroes */ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int > -+leading_zeroes_generic(uint64_t input_num, int last_bit = 0) { > -+ if (input_num & uint64_t(0xffffffff00000000)) { > -+ input_num >>= 32; > -+ last_bit |= 32; > -+ } > -+ if (input_num & uint64_t(0xffff0000)) { > -+ input_num >>= 16; > -+ last_bit |= 16; > -+ } > -+ if (input_num & uint64_t(0xff00)) { > -+ input_num >>= 8; > -+ last_bit |= 8; > -+ } > -+ if (input_num & uint64_t(0xf0)) { > -+ input_num >>= 4; > -+ last_bit |= 4; > -+ } > -+ if (input_num & uint64_t(0xc)) { > -+ input_num >>= 2; > -+ last_bit |= 2; > -+ } > -+ if (input_num & uint64_t(0x2)) { /* input_num >>= 1; */ > -+ last_bit |= 1; > -+ } > -+ return 63 - last_bit; > -+} > -+ > -+/* result might be undefined when input_num is zero */ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 int > -+leading_zeroes(uint64_t input_num) { > -+ assert(input_num > 0); > -+ if (cpp20_and_in_constexpr()) { > -+ return leading_zeroes_generic(input_num); > -+ } > -+#ifdef FASTFLOAT_VISUAL_STUDIO > -+#if defined(_M_X64) || defined(_M_ARM64) > -+ unsigned long leading_zero = 0; > -+ // Search the mask data from most significant bit (MSB) > -+ // to least significant bit (LSB) for a set bit (1). > -+ _BitScanReverse64(&leading_zero, input_num); > -+ return (int)(63 - leading_zero); > -+#else > -+ return leading_zeroes_generic(input_num); > -+#endif > -+#else > -+ return __builtin_clzll(input_num); > -+#endif > -+} > -+ > -+// slow emulation routine for 32-bit > -+fastfloat_really_inline constexpr uint64_t emulu(uint32_t x, uint32_t y) > { > -+ return x * (uint64_t)y; > -+} > -+ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t > -+umul128_generic(uint64_t ab, uint64_t cd, uint64_t *hi) { > -+ uint64_t ad = emulu((uint32_t)(ab >> 32), (uint32_t)cd); > -+ uint64_t bd = emulu((uint32_t)ab, (uint32_t)cd); > -+ uint64_t adbc = ad + emulu((uint32_t)ab, (uint32_t)(cd >> 32)); > -+ uint64_t adbc_carry = (uint64_t)(adbc < ad); > -+ uint64_t lo = bd + (adbc << 32); > -+ *hi = emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) > + > -+ (adbc_carry << 32) + (uint64_t)(lo < bd); > -+ return lo; > -+} > -+ > -+#ifdef FASTFLOAT_32BIT > -+ > -+// slow emulation routine for 32-bit > -+#if !defined(__MINGW64__) > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t _umul128(uint64_t > ab, > -+ uint64_t > cd, > -+ uint64_t > *hi) { > -+ return umul128_generic(ab, cd, hi); > -+} > -+#endif // !__MINGW64__ > -+ > -+#endif // FASTFLOAT_32BIT > -+ > -+// compute 64-bit a*b > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128 > -+full_multiplication(uint64_t a, uint64_t b) { > -+ if (cpp20_and_in_constexpr()) { > -+ value128 answer; > -+ answer.low = umul128_generic(a, b, &answer.high); > -+ return answer; > -+ } > -+ value128 answer; > -+#if defined(_M_ARM64) && !defined(__MINGW32__) > -+ // ARM64 has native support for 64-bit multiplications, no need to > emulate > -+ // But MinGW on ARM64 doesn't have native support for 64-bit > multiplications > -+ answer.high = __umulh(a, b); > -+ answer.low = a * b; > -+#elif defined(FASTFLOAT_32BIT) || > \ > -+ (defined(_WIN64) && !defined(__clang__) && !defined(_M_ARM64)) > -+ answer.low = _umul128(a, b, &answer.high); // _umul128 not available > on ARM64 > -+#elif defined(FASTFLOAT_64BIT) && defined(__SIZEOF_INT128__) > -+ __uint128_t r = ((__uint128_t)a) * b; > -+ answer.low = uint64_t(r); > -+ answer.high = uint64_t(r >> 64); > -+#else > -+ answer.low = umul128_generic(a, b, &answer.high); > -+#endif > -+ return answer; > -+} > -+ > -+struct adjusted_mantissa { > -+ uint64_t mantissa{0}; > -+ int32_t power2{0}; // a negative value indicates an invalid result > -+ adjusted_mantissa() = default; > -+ constexpr bool operator==(const adjusted_mantissa &o) const { > -+ return mantissa == o.mantissa && power2 == o.power2; > -+ } > -+ constexpr bool operator!=(const adjusted_mantissa &o) const { > -+ return mantissa != o.mantissa || power2 != o.power2; > -+ } > -+}; > -+ > -+// Bias so we can get the real exponent with an invalid > adjusted_mantissa. > -+constexpr static int32_t invalid_am_bias = -0x8000; > -+ > -+// used for binary_format_lookup_tables<T>::max_mantissa > -+constexpr uint64_t constant_55555 = 5 * 5 * 5 * 5 * 5; > -+ > -+template <typename T, typename U = void> struct > binary_format_lookup_tables; > -+ > -+template <typename T> struct binary_format : > binary_format_lookup_tables<T> { > -+ using equiv_uint = > -+ typename std::conditional<sizeof(T) == 4, uint32_t, > uint64_t>::type; > -+ > -+ static inline constexpr int mantissa_explicit_bits(); > -+ static inline constexpr int minimum_exponent(); > -+ static inline constexpr int infinite_power(); > -+ static inline constexpr int sign_index(); > -+ static inline constexpr int > -+ min_exponent_fast_path(); // used when fegetround() == FE_TONEAREST > -+ static inline constexpr int max_exponent_fast_path(); > -+ static inline constexpr int max_exponent_round_to_even(); > -+ static inline constexpr int min_exponent_round_to_even(); > -+ static inline constexpr uint64_t max_mantissa_fast_path(int64_t power); > -+ static inline constexpr uint64_t > -+ max_mantissa_fast_path(); // used when fegetround() == FE_TONEAREST > -+ static inline constexpr int largest_power_of_ten(); > -+ static inline constexpr int smallest_power_of_ten(); > -+ static inline constexpr T exact_power_of_ten(int64_t power); > -+ static inline constexpr size_t max_digits(); > -+ static inline constexpr equiv_uint exponent_mask(); > -+ static inline constexpr equiv_uint mantissa_mask(); > -+ static inline constexpr equiv_uint hidden_bit_mask(); > -+}; > -+ > -+template <typename U> struct binary_format_lookup_tables<double, U> { > -+ static constexpr double powers_of_ten[] = { > -+ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, > 1e11, > -+ 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; > -+ > -+ // Largest integer value v so that (5**index * v) <= 1<<53. > -+ // 0x20000000000000 == 1 << 53 > -+ static constexpr uint64_t max_mantissa[] = { > -+ 0x20000000000000, > -+ 0x20000000000000 / 5, > -+ 0x20000000000000 / (5 * 5), > -+ 0x20000000000000 / (5 * 5 * 5), > -+ 0x20000000000000 / (5 * 5 * 5 * 5), > -+ 0x20000000000000 / (constant_55555), > -+ 0x20000000000000 / (constant_55555 * 5), > -+ 0x20000000000000 / (constant_55555 * 5 * 5), > -+ 0x20000000000000 / (constant_55555 * 5 * 5 * 5), > -+ 0x20000000000000 / (constant_55555 * 5 * 5 * 5 * 5), > -+ 0x20000000000000 / (constant_55555 * constant_55555), > -+ 0x20000000000000 / (constant_55555 * constant_55555 * 5), > -+ 0x20000000000000 / (constant_55555 * constant_55555 * 5 * 5), > -+ 0x20000000000000 / (constant_55555 * constant_55555 * 5 * 5 * 5), > -+ 0x20000000000000 / (constant_55555 * constant_55555 * > constant_55555), > -+ 0x20000000000000 / (constant_55555 * constant_55555 * > constant_55555 * 5), > -+ 0x20000000000000 / > -+ (constant_55555 * constant_55555 * constant_55555 * 5 * 5), > -+ 0x20000000000000 / > -+ (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5), > -+ 0x20000000000000 / > -+ (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 > * 5), > -+ 0x20000000000000 / > -+ (constant_55555 * constant_55555 * constant_55555 * > constant_55555), > -+ 0x20000000000000 / (constant_55555 * constant_55555 * > constant_55555 * > -+ constant_55555 * 5), > -+ 0x20000000000000 / (constant_55555 * constant_55555 * > constant_55555 * > -+ constant_55555 * 5 * 5), > -+ 0x20000000000000 / (constant_55555 * constant_55555 * > constant_55555 * > -+ constant_55555 * 5 * 5 * 5), > -+ 0x20000000000000 / (constant_55555 * constant_55555 * > constant_55555 * > -+ constant_55555 * 5 * 5 * 5 * 5)}; > -+}; > -+ > -+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE > -+ > -+template <typename U> > -+constexpr double binary_format_lookup_tables<double, U>::powers_of_ten[]; > -+ > -+template <typename U> > -+constexpr uint64_t binary_format_lookup_tables<double, > U>::max_mantissa[]; > -+ > -+#endif > -+ > -+template <typename U> struct binary_format_lookup_tables<float, U> { > -+ static constexpr float powers_of_ten[] = {1e0f, 1e1f, 1e2f, 1e3f, > 1e4f, 1e5f, > -+ 1e6f, 1e7f, 1e8f, 1e9f, > 1e10f}; > -+ > -+ // Largest integer value v so that (5**index * v) <= 1<<24. > -+ // 0x1000000 == 1<<24 > -+ static constexpr uint64_t max_mantissa[] = { > -+ 0x1000000, > -+ 0x1000000 / 5, > -+ 0x1000000 / (5 * 5), > -+ 0x1000000 / (5 * 5 * 5), > -+ 0x1000000 / (5 * 5 * 5 * 5), > -+ 0x1000000 / (constant_55555), > -+ 0x1000000 / (constant_55555 * 5), > -+ 0x1000000 / (constant_55555 * 5 * 5), > -+ 0x1000000 / (constant_55555 * 5 * 5 * 5), > -+ 0x1000000 / (constant_55555 * 5 * 5 * 5 * 5), > -+ 0x1000000 / (constant_55555 * constant_55555), > -+ 0x1000000 / (constant_55555 * constant_55555 * 5)}; > -+}; > -+ > -+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE > -+ > -+template <typename U> > -+constexpr float binary_format_lookup_tables<float, U>::powers_of_ten[]; > -+ > -+template <typename U> > -+constexpr uint64_t binary_format_lookup_tables<float, U>::max_mantissa[]; > -+ > -+#endif > -+ > -+template <> > -+inline constexpr int binary_format<double>::min_exponent_fast_path() { > -+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) > -+ return 0; > -+#else > -+ return -22; > -+#endif > -+} > -+ > -+template <> > -+inline constexpr int binary_format<float>::min_exponent_fast_path() { > -+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) > -+ return 0; > -+#else > -+ return -10; > -+#endif > -+} > -+ > -+template <> > -+inline constexpr int binary_format<double>::mantissa_explicit_bits() { > -+ return 52; > -+} > -+template <> > -+inline constexpr int binary_format<float>::mantissa_explicit_bits() { > -+ return 23; > -+} > -+ > -+template <> > -+inline constexpr int binary_format<double>::max_exponent_round_to_even() > { > -+ return 23; > -+} > -+ > -+template <> > -+inline constexpr int binary_format<float>::max_exponent_round_to_even() { > -+ return 10; > -+} > -+ > -+template <> > -+inline constexpr int binary_format<double>::min_exponent_round_to_even() > { > -+ return -4; > -+} > -+ > -+template <> > -+inline constexpr int binary_format<float>::min_exponent_round_to_even() { > -+ return -17; > -+} > -+ > -+template <> inline constexpr int > binary_format<double>::minimum_exponent() { > -+ return -1023; > -+} > -+template <> inline constexpr int > binary_format<float>::minimum_exponent() { > -+ return -127; > -+} > -+ > -+template <> inline constexpr int binary_format<double>::infinite_power() > { > -+ return 0x7FF; > -+} > -+template <> inline constexpr int binary_format<float>::infinite_power() { > -+ return 0xFF; > -+} > -+ > -+template <> inline constexpr int binary_format<double>::sign_index() { > -+ return 63; > -+} > -+template <> inline constexpr int binary_format<float>::sign_index() { > -+ return 31; > -+} > -+ > -+template <> > -+inline constexpr int binary_format<double>::max_exponent_fast_path() { > -+ return 22; > -+} > -+template <> > -+inline constexpr int binary_format<float>::max_exponent_fast_path() { > -+ return 10; > -+} > -+ > -+template <> > -+inline constexpr uint64_t > binary_format<double>::max_mantissa_fast_path() { > -+ return uint64_t(2) << mantissa_explicit_bits(); > -+} > -+template <> > -+inline constexpr uint64_t > -+binary_format<double>::max_mantissa_fast_path(int64_t power) { > -+ // caller is responsible to ensure that > -+ // power >= 0 && power <= 22 > -+ // > -+ // Work around clang bug https://godbolt.org/z/zedh7rrhc > -+ return (void)max_mantissa[0], max_mantissa[power]; > -+} > -+template <> > -+inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path() > { > -+ return uint64_t(2) << mantissa_explicit_bits(); > -+} > -+template <> > -+inline constexpr uint64_t > -+binary_format<float>::max_mantissa_fast_path(int64_t power) { > -+ // caller is responsible to ensure that > -+ // power >= 0 && power <= 10 > -+ // > -+ // Work around clang bug https://godbolt.org/z/zedh7rrhc > -+ return (void)max_mantissa[0], max_mantissa[power]; > -+} > -+ > -+template <> > -+inline constexpr double > -+binary_format<double>::exact_power_of_ten(int64_t power) { > -+ // Work around clang bug https://godbolt.org/z/zedh7rrhc > -+ return (void)powers_of_ten[0], powers_of_ten[power]; > -+} > -+template <> > -+inline constexpr float binary_format<float>::exact_power_of_ten(int64_t > power) { > -+ // Work around clang bug https://godbolt.org/z/zedh7rrhc > -+ return (void)powers_of_ten[0], powers_of_ten[power]; > -+} > -+ > -+template <> inline constexpr int > binary_format<double>::largest_power_of_ten() { > -+ return 308; > -+} > -+template <> inline constexpr int > binary_format<float>::largest_power_of_ten() { > -+ return 38; > -+} > -+ > -+template <> > -+inline constexpr int binary_format<double>::smallest_power_of_ten() { > -+ return -342; > -+} > -+template <> inline constexpr int > binary_format<float>::smallest_power_of_ten() { > -+ return -64; > -+} > -+ > -+template <> inline constexpr size_t binary_format<double>::max_digits() { > -+ return 769; > -+} > -+template <> inline constexpr size_t binary_format<float>::max_digits() { > -+ return 114; > -+} > -+ > -+template <> > -+inline constexpr binary_format<float>::equiv_uint > -+binary_format<float>::exponent_mask() { > -+ return 0x7F800000; > -+} > -+template <> > -+inline constexpr binary_format<double>::equiv_uint > -+binary_format<double>::exponent_mask() { > -+ return 0x7FF0000000000000; > -+} > -+ > -+template <> > -+inline constexpr binary_format<float>::equiv_uint > -+binary_format<float>::mantissa_mask() { > -+ return 0x007FFFFF; > -+} > -+template <> > -+inline constexpr binary_format<double>::equiv_uint > -+binary_format<double>::mantissa_mask() { > -+ return 0x000FFFFFFFFFFFFF; > -+} > -+ > -+template <> > -+inline constexpr binary_format<float>::equiv_uint > -+binary_format<float>::hidden_bit_mask() { > -+ return 0x00800000; > -+} > -+template <> > -+inline constexpr binary_format<double>::equiv_uint > -+binary_format<double>::hidden_bit_mask() { > -+ return 0x0010000000000000; > -+} > -+ > -+template <typename T> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void > -+to_float(bool negative, adjusted_mantissa am, T &value) { > -+ using fastfloat_uint = typename binary_format<T>::equiv_uint; > -+ fastfloat_uint word = (fastfloat_uint)am.mantissa; > -+ word |= fastfloat_uint(am.power2) > -+ << binary_format<T>::mantissa_explicit_bits(); > -+ word |= fastfloat_uint(negative) << binary_format<T>::sign_index(); > -+#if FASTFLOAT_HAS_BIT_CAST > -+ value = std::bit_cast<T>(word); > -+#else > -+ ::memcpy(&value, &word, sizeof(T)); > -+#endif > -+} > -+ > -+#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default > -+template <typename = void> struct space_lut { > -+ static constexpr bool value[] = { > -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, > 0, 0, > -+ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > 0, 0, > -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > 0, 0, > -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > 0, 0, > -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > 0, 0, > -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > 0, 0, > -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > 0, 0, > -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > 0, 0, > -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > 0, 0, > -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > 0, 0, > -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; > -+}; > -+ > -+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE > -+ > -+template <typename T> constexpr bool space_lut<T>::value[]; > -+ > -+#endif > -+ > -+inline constexpr bool is_space(uint8_t c) { return > space_lut<>::value[c]; } > -+#endif > -+ > -+template <typename UC> static constexpr uint64_t int_cmp_zeros() { > -+ static_assert((sizeof(UC) == 1) || (sizeof(UC) == 2) || (sizeof(UC) == > 4), > -+ "Unsupported character size"); > -+ return (sizeof(UC) == 1) ? 0x3030303030303030 > -+ : (sizeof(UC) == 2) > -+ ? (uint64_t(UC('0')) << 48 | uint64_t(UC('0')) << 32 | > -+ uint64_t(UC('0')) << 16 | UC('0')) > -+ : (uint64_t(UC('0')) << 32 | UC('0')); > -+} > -+template <typename UC> static constexpr int int_cmp_len() { > -+ return sizeof(uint64_t) / sizeof(UC); > -+} > -+template <typename UC> static constexpr UC const *str_const_nan() { > -+ return nullptr; > -+} > -+template <> constexpr char const *str_const_nan<char>() { return "nan"; } > -+template <> constexpr wchar_t const *str_const_nan<wchar_t>() { return > L"nan"; } > -+template <> constexpr char16_t const *str_const_nan<char16_t>() { > -+ return u"nan"; > -+} > -+template <> constexpr char32_t const *str_const_nan<char32_t>() { > -+ return U"nan"; > -+} > -+template <typename UC> static constexpr UC const *str_const_inf() { > -+ return nullptr; > -+} > -+template <> constexpr char const *str_const_inf<char>() { return > "infinity"; } > -+template <> constexpr wchar_t const *str_const_inf<wchar_t>() { > -+ return L"infinity"; > -+} > -+template <> constexpr char16_t const *str_const_inf<char16_t>() { > -+ return u"infinity"; > -+} > -+template <> constexpr char32_t const *str_const_inf<char32_t>() { > -+ return U"infinity"; > -+} > -+ > -+template <typename = void> struct int_luts { > -+ static constexpr uint8_t chdigit[] = { > -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > 255, 255, > -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > 255, 255, > -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > 255, 255, > -+ 255, 255, 255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, > 255, 255, > -+ 255, 255, 255, 255, 255, 10, 11, 12, 13, 14, 15, 16, 17, > 18, 19, > -+ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, > 33, 34, > -+ 35, 255, 255, 255, 255, 255, 255, 10, 11, 12, 13, 14, 15, > 16, 17, > -+ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, > 31, 32, > -+ 33, 34, 35, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > 255, 255, > -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > 255, 255, > -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > 255, 255, > -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > 255, 255, > -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > 255, 255, > -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > 255, 255, > -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > 255, 255, > -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > 255, 255, > -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, > 255, 255, > -+ 255}; > -+ > -+ static constexpr size_t maxdigits_u64[] = { > -+ 64, 41, 32, 28, 25, 23, 22, 21, 20, 19, 18, 18, 17, 17, 16, 16, > 16, 16, > -+ 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, > 13}; > -+ > -+ static constexpr uint64_t min_safe_u64[] = { > -+ 9223372036854775808ull, 12157665459056928801ull, > 4611686018427387904, > -+ 7450580596923828125, 4738381338321616896, > 3909821048582988049, > -+ 9223372036854775808ull, 12157665459056928801ull, > 10000000000000000000ull, > -+ 5559917313492231481, 2218611106740436992, > 8650415919381337933, > -+ 2177953337809371136, 6568408355712890625, > 1152921504606846976, > -+ 2862423051509815793, 6746640616477458432, > 15181127029874798299ull, > -+ 1638400000000000000, 3243919932521508681, > 6221821273427820544, > -+ 11592836324538749809ull, 876488338465357824, > 1490116119384765625, > -+ 2481152873203736576, 4052555153018976267, > 6502111422497947648, > -+ 10260628712958602189ull, 15943230000000000000ull, > 787662783788549761, > -+ 1152921504606846976, 1667889514952984961, > 2386420683693101056, > -+ 3379220508056640625, 4738381338321616896}; > -+}; > -+ > -+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE > -+ > -+template <typename T> constexpr uint8_t int_luts<T>::chdigit[]; > -+ > -+template <typename T> constexpr size_t int_luts<T>::maxdigits_u64[]; > -+ > -+template <typename T> constexpr uint64_t int_luts<T>::min_safe_u64[]; > -+ > -+#endif > -+ > -+template <typename UC> > -+fastfloat_really_inline constexpr uint8_t ch_to_digit(UC c) { > -+ return int_luts<>::chdigit[static_cast<unsigned char>(c)]; > -+} > -+ > -+fastfloat_really_inline constexpr size_t max_digits_u64(int base) { > -+ return int_luts<>::maxdigits_u64[base - 2]; > -+} > -+ > -+// If a u64 is exactly max_digits_u64() in length, this is > -+// the value below which it has definitely overflowed. > -+fastfloat_really_inline constexpr uint64_t min_safe_u64(int base) { > -+ return int_luts<>::min_safe_u64[base - 2]; > -+} > -+ > -+} // namespace fast_float > -+ > -+#endif > -+ > -+ > -+#ifndef FASTFLOAT_FAST_FLOAT_H > -+#define FASTFLOAT_FAST_FLOAT_H > -+ > -+ > -+namespace fast_float { > -+/** > -+ * This function parses the character sequence [first,last) for a > number. It > -+ * parses floating-point numbers expecting a locale-indepent format > equivalent > -+ * to what is used by std::strtod in the default ("C") locale. The > resulting > -+ * floating-point value is the closest floating-point values (using > either float > -+ * or double), using the "round to even" convention for values that would > -+ * otherwise fall right in-between two values. That is, we provide exact > parsing > -+ * according to the IEEE standard. > -+ * > -+ * Given a successful parse, the pointer (`ptr`) in the returned value > is set to > -+ * point right after the parsed number, and the `value` referenced is > set to the > -+ * parsed value. In case of error, the returned `ec` contains a > representative > -+ * error, otherwise the default (`std::errc()`) value is stored. > -+ * > -+ * The implementation does not throw and does not allocate memory (e.g., > with > -+ * `new` or `malloc`). > -+ * > -+ * Like the C++17 standard, the `fast_float::from_chars` functions take > an > -+ * optional last argument of the type `fast_float::chars_format`. It is > a bitset > -+ * value: we check whether `fmt & fast_float::chars_format::fixed` and > `fmt & > -+ * fast_float::chars_format::scientific` are set to determine whether we > allow > -+ * the fixed point and scientific notation respectively. The default is > -+ * `fast_float::chars_format::general` which allows both `fixed` and > -+ * `scientific`. > -+ */ > -+template <typename T, typename UC = char, > -+ typename = FASTFLOAT_ENABLE_IF(is_supported_float_type<T>())> > -+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> > -+from_chars(UC const *first, UC const *last, T &value, > -+ chars_format fmt = chars_format::general) noexcept; > -+ > -+/** > -+ * Like from_chars, but accepts an `options` argument to govern number > parsing. > -+ */ > -+template <typename T, typename UC = char> > -+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> > -+from_chars_advanced(UC const *first, UC const *last, T &value, > -+ parse_options_t<UC> options) noexcept; > -+/** > -+ * from_chars for integer types. > -+ */ > -+template <typename T, typename UC = char, > -+ typename = FASTFLOAT_ENABLE_IF(!is_supported_float_type<T>())> > -+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> > -+from_chars(UC const *first, UC const *last, T &value, int base = 10) > noexcept; > -+ > -+} // namespace fast_float > -+#endif // FASTFLOAT_FAST_FLOAT_H > -+ > -+#ifndef FASTFLOAT_ASCII_NUMBER_H > -+#define FASTFLOAT_ASCII_NUMBER_H > -+ > -+#include <cctype> > -+#include <cstdint> > -+#include <cstring> > -+#include <iterator> > -+#include <limits> > -+#include <type_traits> > -+ > -+ > -+#ifdef FASTFLOAT_SSE2 > -+#include <emmintrin.h> > -+#endif > -+ > -+#ifdef FASTFLOAT_NEON > -+#include <arm_neon.h> > -+#endif > -+ > -+namespace fast_float { > -+ > -+template <typename UC> fastfloat_really_inline constexpr bool > has_simd_opt() { > -+#ifdef FASTFLOAT_HAS_SIMD > -+ return std::is_same<UC, char16_t>::value; > -+#else > -+ return false; > -+#endif > -+} > -+ > -+// Next function can be micro-optimized, but compilers are entirely > -+// able to optimize it well. > -+template <typename UC> > -+fastfloat_really_inline constexpr bool is_integer(UC c) noexcept { > -+ return !(c > UC('9') || c < UC('0')); > -+} > -+ > -+fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) { > -+ return (val & 0xFF00000000000000) >> 56 | (val & 0x00FF000000000000) > >> 40 | > -+ (val & 0x0000FF0000000000) >> 24 | (val & 0x000000FF00000000) > >> 8 | > -+ (val & 0x00000000FF000000) << 8 | (val & 0x0000000000FF0000) << > 24 | > -+ (val & 0x000000000000FF00) << 40 | (val & 0x00000000000000FF) > << 56; > -+} > -+ > -+// Read 8 UC into a u64. Truncates UC if not char. > -+template <typename UC> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t > -+read8_to_u64(const UC *chars) { > -+ if (cpp20_and_in_constexpr() || !std::is_same<UC, char>::value) { > -+ uint64_t val = 0; > -+ for (int i = 0; i < 8; ++i) { > -+ val |= uint64_t(uint8_t(*chars)) << (i * 8); > -+ ++chars; > -+ } > -+ return val; > -+ } > -+ uint64_t val; > -+ ::memcpy(&val, chars, sizeof(uint64_t)); > -+#if FASTFLOAT_IS_BIG_ENDIAN == 1 > -+ // Need to read as-if the number was in little-endian order. > -+ val = byteswap(val); > -+#endif > -+ return val; > -+} > -+ > -+#ifdef FASTFLOAT_SSE2 > -+ > -+fastfloat_really_inline uint64_t simd_read8_to_u64(const __m128i data) { > -+ FASTFLOAT_SIMD_DISABLE_WARNINGS > -+ const __m128i packed = _mm_packus_epi16(data, data); > -+#ifdef FASTFLOAT_64BIT > -+ return uint64_t(_mm_cvtsi128_si64(packed)); > -+#else > -+ uint64_t value; > -+ // Visual Studio + older versions of GCC don't support _mm_storeu_si64 > -+ _mm_storel_epi64(reinterpret_cast<__m128i *>(&value), packed); > -+ return value; > -+#endif > -+ FASTFLOAT_SIMD_RESTORE_WARNINGS > -+} > -+ > -+fastfloat_really_inline uint64_t simd_read8_to_u64(const char16_t > *chars) { > -+ FASTFLOAT_SIMD_DISABLE_WARNINGS > -+ return simd_read8_to_u64( > -+ _mm_loadu_si128(reinterpret_cast<const __m128i *>(chars))); > -+ FASTFLOAT_SIMD_RESTORE_WARNINGS > -+} > -+ > -+#elif defined(FASTFLOAT_NEON) > -+ > -+fastfloat_really_inline uint64_t simd_read8_to_u64(const uint16x8_t > data) { > -+ FASTFLOAT_SIMD_DISABLE_WARNINGS > -+ uint8x8_t utf8_packed = vmovn_u16(data); > -+ return vget_lane_u64(vreinterpret_u64_u8(utf8_packed), 0); > -+ FASTFLOAT_SIMD_RESTORE_WARNINGS > -+} > -+ > -+fastfloat_really_inline uint64_t simd_read8_to_u64(const char16_t > *chars) { > -+ FASTFLOAT_SIMD_DISABLE_WARNINGS > -+ return simd_read8_to_u64( > -+ vld1q_u16(reinterpret_cast<const uint16_t *>(chars))); > -+ FASTFLOAT_SIMD_RESTORE_WARNINGS > -+} > -+ > -+#endif // FASTFLOAT_SSE2 > -+ > -+// MSVC SFINAE is broken pre-VS2017 > -+#if defined(_MSC_VER) && _MSC_VER <= 1900 > -+template <typename UC> > -+#else > -+template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0> > -+#endif > -+// dummy for compile > -+uint64_t simd_read8_to_u64(UC const *) { > -+ return 0; > -+} > -+ > -+// credit @aqrit > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint32_t > -+parse_eight_digits_unrolled(uint64_t val) { > -+ const uint64_t mask = 0x000000FF000000FF; > -+ const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32) > -+ const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32) > -+ val -= 0x3030303030303030; > -+ val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8; > -+ val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32; > -+ return uint32_t(val); > -+} > -+ > -+// Call this if chars are definitely 8 digits. > -+template <typename UC> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint32_t > -+parse_eight_digits_unrolled(UC const *chars) noexcept { > -+ if (cpp20_and_in_constexpr() || !has_simd_opt<UC>()) { > -+ return parse_eight_digits_unrolled(read8_to_u64(chars)); // > truncation okay > -+ } > -+ return parse_eight_digits_unrolled(simd_read8_to_u64(chars)); > -+} > -+ > -+// credit @aqrit > -+fastfloat_really_inline constexpr bool > -+is_made_of_eight_digits_fast(uint64_t val) noexcept { > -+ return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) & > -+ 0x8080808080808080)); > -+} > -+ > -+#ifdef FASTFLOAT_HAS_SIMD > -+ > -+// Call this if chars might not be 8 digits. > -+// Using this style (instead of is_made_of_eight_digits_fast() then > -+// parse_eight_digits_unrolled()) ensures we don't load SIMD registers > twice. > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool > -+simd_parse_if_eight_digits_unrolled(const char16_t *chars, > -+ uint64_t &i) noexcept { > -+ if (cpp20_and_in_constexpr()) { > -+ return false; > -+ } > -+#ifdef FASTFLOAT_SSE2 > -+ FASTFLOAT_SIMD_DISABLE_WARNINGS > -+ const __m128i data = > -+ _mm_loadu_si128(reinterpret_cast<const __m128i *>(chars)); > -+ > -+ // (x - '0') <= 9 > -+ // http://0x80.pl/articles/simd-parsing-int-sequences.html > -+ const __m128i t0 = _mm_add_epi16(data, _mm_set1_epi16(32720)); > -+ const __m128i t1 = _mm_cmpgt_epi16(t0, _mm_set1_epi16(-32759)); > -+ > -+ if (_mm_movemask_epi8(t1) == 0) { > -+ i = i * 100000000 + > parse_eight_digits_unrolled(simd_read8_to_u64(data)); > -+ return true; > -+ } else > -+ return false; > -+ FASTFLOAT_SIMD_RESTORE_WARNINGS > -+#elif defined(FASTFLOAT_NEON) > -+ FASTFLOAT_SIMD_DISABLE_WARNINGS > -+ const uint16x8_t data = vld1q_u16(reinterpret_cast<const uint16_t > *>(chars)); > -+ > -+ // (x - '0') <= 9 > -+ // http://0x80.pl/articles/simd-parsing-int-sequences.html > -+ const uint16x8_t t0 = vsubq_u16(data, vmovq_n_u16('0')); > -+ const uint16x8_t mask = vcltq_u16(t0, vmovq_n_u16('9' - '0' + 1)); > -+ > -+ if (vminvq_u16(mask) == 0xFFFF) { > -+ i = i * 100000000 + > parse_eight_digits_unrolled(simd_read8_to_u64(data)); > -+ return true; > -+ } else > -+ return false; > -+ FASTFLOAT_SIMD_RESTORE_WARNINGS > -+#else > -+ (void)chars; > -+ (void)i; > -+ return false; > -+#endif // FASTFLOAT_SSE2 > -+} > -+ > -+#endif // FASTFLOAT_HAS_SIMD > -+ > -+// MSVC SFINAE is broken pre-VS2017 > -+#if defined(_MSC_VER) && _MSC_VER <= 1900 > -+template <typename UC> > -+#else > -+template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0> > -+#endif > -+// dummy for compile > -+bool simd_parse_if_eight_digits_unrolled(UC const *, uint64_t &) { > -+ return 0; > -+} > -+ > -+template <typename UC, FASTFLOAT_ENABLE_IF(!std::is_same<UC, > char>::value) = 0> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void > -+loop_parse_if_eight_digits(const UC *&p, const UC *const pend, uint64_t > &i) { > -+ if (!has_simd_opt<UC>()) { > -+ return; > -+ } > -+ while ((std::distance(p, pend) >= 8) && > -+ simd_parse_if_eight_digits_unrolled( > -+ p, i)) { // in rare cases, this will overflow, but that's ok > -+ p += 8; > -+ } > -+} > -+ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void > -+loop_parse_if_eight_digits(const char *&p, const char *const pend, > -+ uint64_t &i) { > -+ // optimizes better than parse_if_eight_digits_unrolled() for UC = > char. > -+ while ((std::distance(p, pend) >= 8) && > -+ is_made_of_eight_digits_fast(read8_to_u64(p))) { > -+ i = i * 100000000 + > -+ parse_eight_digits_unrolled(read8_to_u64( > -+ p)); // in rare cases, this will overflow, but that's ok > -+ p += 8; > -+ } > -+} > -+ > -+enum class parse_error { > -+ no_error, > -+ // [JSON-only] The minus sign must be followed by an integer. > -+ missing_integer_after_sign, > -+ // A sign must be followed by an integer or dot. > -+ missing_integer_or_dot_after_sign, > -+ // [JSON-only] The integer part must not have leading zeros. > -+ leading_zeros_in_integer_part, > -+ // [JSON-only] The integer part must have at least one digit. > -+ no_digits_in_integer_part, > -+ // [JSON-only] If there is a decimal point, there must be digits in the > -+ // fractional part. > -+ no_digits_in_fractional_part, > -+ // The mantissa must have at least one digit. > -+ no_digits_in_mantissa, > -+ // Scientific notation requires an exponential part. > -+ missing_exponential_part, > -+}; > -+ > -+template <typename UC> struct parsed_number_string_t { > -+ int64_t exponent{0}; > -+ uint64_t mantissa{0}; > -+ UC const *lastmatch{nullptr}; > -+ bool negative{false}; > -+ bool valid{false}; > -+ bool too_many_digits{false}; > -+ // contains the range of the significant digits > -+ span<const UC> integer{}; // non-nullable > -+ span<const UC> fraction{}; // nullable > -+ parse_error error{parse_error::no_error}; > -+}; > -+ > -+using byte_span = span<const char>; > -+using parsed_number_string = parsed_number_string_t<char>; > -+ > -+template <typename UC> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC> > -+report_parse_error(UC const *p, parse_error error) { > -+ parsed_number_string_t<UC> answer; > -+ answer.valid = false; > -+ answer.lastmatch = p; > -+ answer.error = error; > -+ return answer; > -+} > -+ > -+// Assuming that you use no more than 19 digits, this will > -+// parse an ASCII string. > -+template <typename UC> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC> > -+parse_number_string(UC const *p, UC const *pend, > -+ parse_options_t<UC> options) noexcept { > -+ chars_format const fmt = options.format; > -+ UC const decimal_point = options.decimal_point; > -+ > -+ parsed_number_string_t<UC> answer; > -+ answer.valid = false; > -+ answer.too_many_digits = false; > -+ answer.negative = (*p == UC('-')); > -+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default > -+ if ((*p == UC('-')) || (!(fmt & FASTFLOAT_JSONFMT) && *p == UC('+'))) { > -+#else > -+ if (*p == UC('-')) { // C++17 20.19.3.(7.1) explicitly forbids '+' > sign here > -+#endif > -+ ++p; > -+ if (p == pend) { > -+ return report_parse_error<UC>( > -+ p, parse_error::missing_integer_or_dot_after_sign); > -+ } > -+ if (fmt & FASTFLOAT_JSONFMT) { > -+ if (!is_integer(*p)) { // a sign must be followed by an integer > -+ return report_parse_error<UC>(p, > -+ > parse_error::missing_integer_after_sign); > -+ } > -+ } else { > -+ if (!is_integer(*p) && > -+ (*p != > -+ decimal_point)) { // a sign must be followed by an integer or > the dot > -+ return report_parse_error<UC>( > -+ p, parse_error::missing_integer_or_dot_after_sign); > -+ } > -+ } > -+ } > -+ UC const *const start_digits = p; > -+ > -+ uint64_t i = 0; // an unsigned int avoids signed overflows (which are > bad) > -+ > -+ while ((p != pend) && is_integer(*p)) { > -+ // a multiplication by 10 is cheaper than an arbitrary integer > -+ // multiplication > -+ i = 10 * i + > -+ uint64_t(*p - > -+ UC('0')); // might overflow, we will handle the > overflow later > -+ ++p; > -+ } > -+ UC const *const end_of_integer_part = p; > -+ int64_t digit_count = int64_t(end_of_integer_part - start_digits); > -+ answer.integer = span<const UC>(start_digits, size_t(digit_count)); > -+ if (fmt & FASTFLOAT_JSONFMT) { > -+ // at least 1 digit in integer part, without leading zeros > -+ if (digit_count == 0) { > -+ return report_parse_error<UC>(p, > parse_error::no_digits_in_integer_part); > -+ } > -+ if ((start_digits[0] == UC('0') && digit_count > 1)) { > -+ return report_parse_error<UC>(start_digits, > -+ > parse_error::leading_zeros_in_integer_part); > -+ } > -+ } > -+ > -+ int64_t exponent = 0; > -+ const bool has_decimal_point = (p != pend) && (*p == decimal_point); > -+ if (has_decimal_point) { > -+ ++p; > -+ UC const *before = p; > -+ // can occur at most twice without overflowing, but let it occur > more, since > -+ // for integers with many digits, digit parsing is the primary > bottleneck. > -+ loop_parse_if_eight_digits(p, pend, i); > -+ > -+ while ((p != pend) && is_integer(*p)) { > -+ uint8_t digit = uint8_t(*p - UC('0')); > -+ ++p; > -+ i = i * 10 + digit; // in rare cases, this will overflow, but > that's ok > -+ } > -+ exponent = before - p; > -+ answer.fraction = span<const UC>(before, size_t(p - before)); > -+ digit_count -= exponent; > -+ } > -+ if (fmt & FASTFLOAT_JSONFMT) { > -+ // at least 1 digit in fractional part > -+ if (has_decimal_point && exponent == 0) { > -+ return report_parse_error<UC>(p, > -+ > parse_error::no_digits_in_fractional_part); > -+ } > -+ } else if (digit_count == > -+ 0) { // we must have encountered at least one integer! > -+ return report_parse_error<UC>(p, parse_error::no_digits_in_mantissa); > -+ } > -+ int64_t exp_number = 0; // explicit exponential part > -+ if (((fmt & chars_format::scientific) && (p != pend) && > -+ ((UC('e') == *p) || (UC('E') == *p))) || > -+ ((fmt & FASTFLOAT_FORTRANFMT) && (p != pend) && > -+ ((UC('+') == *p) || (UC('-') == *p) || (UC('d') == *p) || > -+ (UC('D') == *p)))) { > -+ UC const *location_of_e = p; > -+ if ((UC('e') == *p) || (UC('E') == *p) || (UC('d') == *p) || > -+ (UC('D') == *p)) { > -+ ++p; > -+ } > -+ bool neg_exp = false; > -+ if ((p != pend) && (UC('-') == *p)) { > -+ neg_exp = true; > -+ ++p; > -+ } else if ((p != pend) && > -+ (UC('+') == > -+ *p)) { // '+' on exponent is allowed by C++17 > 20.19.3.(7.1) > -+ ++p; > -+ } > -+ if ((p == pend) || !is_integer(*p)) { > -+ if (!(fmt & chars_format::fixed)) { > -+ // The exponential part is invalid for scientific notation, so > it must > -+ // be a trailing token for fixed notation. However, fixed > notation is > -+ // disabled, so report a scientific notation error. > -+ return report_parse_error<UC>(p, > parse_error::missing_exponential_part); > -+ } > -+ // Otherwise, we will be ignoring the 'e'. > -+ p = location_of_e; > -+ } else { > -+ while ((p != pend) && is_integer(*p)) { > -+ uint8_t digit = uint8_t(*p - UC('0')); > -+ if (exp_number < 0x10000000) { > -+ exp_number = 10 * exp_number + digit; > -+ } > -+ ++p; > -+ } > -+ if (neg_exp) { > -+ exp_number = -exp_number; > -+ } > -+ exponent += exp_number; > -+ } > -+ } else { > -+ // If it scientific and not fixed, we have to bail out. > -+ if ((fmt & chars_format::scientific) && !(fmt & > chars_format::fixed)) { > -+ return report_parse_error<UC>(p, > parse_error::missing_exponential_part); > -+ } > -+ } > -+ answer.lastmatch = p; > -+ answer.valid = true; > -+ > -+ // If we frequently had to deal with long strings of digits, > -+ // we could extend our code by using a 128-bit integer instead > -+ // of a 64-bit integer. However, this is uncommon. > -+ // > -+ // We can deal with up to 19 digits. > -+ if (digit_count > 19) { // this is uncommon > -+ // It is possible that the integer had an overflow. > -+ // We have to handle the case where we have 0.0000somenumber. > -+ // We need to be mindful of the case where we only have zeroes... > -+ // E.g., 0.000000000...000. > -+ UC const *start = start_digits; > -+ while ((start != pend) && (*start == UC('0') || *start == > decimal_point)) { > -+ if (*start == UC('0')) { > -+ digit_count--; > -+ } > -+ start++; > -+ } > -+ > -+ if (digit_count > 19) { > -+ answer.too_many_digits = true; > -+ // Let us start again, this time, avoiding overflows. > -+ // We don't need to check if is_integer, since we use the > -+ // pre-tokenized spans from above. > -+ i = 0; > -+ p = answer.integer.ptr; > -+ UC const *int_end = p + answer.integer.len(); > -+ const uint64_t minimal_nineteen_digit_integer{1000000000000000000}; > -+ while ((i < minimal_nineteen_digit_integer) && (p != int_end)) { > -+ i = i * 10 + uint64_t(*p - UC('0')); > -+ ++p; > -+ } > -+ if (i >= minimal_nineteen_digit_integer) { // We have a big > integers > -+ exponent = end_of_integer_part - p + exp_number; > -+ } else { // We have a value with a fractional component. > -+ p = answer.fraction.ptr; > -+ UC const *frac_end = p + answer.fraction.len(); > -+ while ((i < minimal_nineteen_digit_integer) && (p != frac_end)) { > -+ i = i * 10 + uint64_t(*p - UC('0')); > -+ ++p; > -+ } > -+ exponent = answer.fraction.ptr - p + exp_number; > -+ } > -+ // We have now corrected both exponent and i, to a truncated value > -+ } > -+ } > -+ answer.exponent = exponent; > -+ answer.mantissa = i; > -+ return answer; > -+} > -+ > -+template <typename T, typename UC> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> > -+parse_int_string(UC const *p, UC const *pend, T &value, int base) { > -+ from_chars_result_t<UC> answer; > -+ > -+ UC const *const first = p; > -+ > -+ bool negative = (*p == UC('-')); > -+ if (!std::is_signed<T>::value && negative) { > -+ answer.ec = std::errc::invalid_argument; > -+ answer.ptr = first; > -+ return answer; > -+ } > -+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default > -+ if ((*p == UC('-')) || (*p == UC('+'))) { > -+#else > -+ if (*p == UC('-')) { > -+#endif > -+ ++p; > -+ } > -+ > -+ UC const *const start_num = p; > -+ > -+ while (p != pend && *p == UC('0')) { > -+ ++p; > -+ } > -+ > -+ const bool has_leading_zeros = p > start_num; > -+ > -+ UC const *const start_digits = p; > -+ > -+ uint64_t i = 0; > -+ if (base == 10) { > -+ loop_parse_if_eight_digits(p, pend, i); // use SIMD if possible > -+ } > -+ while (p != pend) { > -+ uint8_t digit = ch_to_digit(*p); > -+ if (digit >= base) { > -+ break; > -+ } > -+ i = uint64_t(base) * i + digit; // might overflow, check this later > -+ p++; > -+ } > -+ > -+ size_t digit_count = size_t(p - start_digits); > -+ > -+ if (digit_count == 0) { > -+ if (has_leading_zeros) { > -+ value = 0; > -+ answer.ec = std::errc(); > -+ answer.ptr = p; > -+ } else { > -+ answer.ec = std::errc::invalid_argument; > -+ answer.ptr = first; > -+ } > -+ return answer; > -+ } > -+ > -+ answer.ptr = p; > -+ > -+ // check u64 overflow > -+ size_t max_digits = max_digits_u64(base); > -+ if (digit_count > max_digits) { > -+ answer.ec = std::errc::result_out_of_range; > -+ return answer; > -+ } > -+ // this check can be eliminated for all other types, but they will all > require > -+ // a max_digits(base) equivalent > -+ if (digit_count == max_digits && i < min_safe_u64(base)) { > -+ answer.ec = std::errc::result_out_of_range; > -+ return answer; > -+ } > -+ > -+ // check other types overflow > -+ if (!std::is_same<T, uint64_t>::value) { > -+ if (i > uint64_t(std::numeric_limits<T>::max()) + > uint64_t(negative)) { > -+ answer.ec = std::errc::result_out_of_range; > -+ return answer; > -+ } > -+ } > -+ > -+ if (negative) { > -+#ifdef FASTFLOAT_VISUAL_STUDIO > -+#pragma warning(push) > -+#pragma warning(disable : 4146) > -+#endif > -+ // this weird workaround is required because: > -+ // - converting unsigned to signed when its value is greater than > signed max > -+ // is UB pre-C++23. > -+ // - reinterpret_casting (~i + 1) would work, but it is not constexpr > -+ // this is always optimized into a neg instruction (note: T is an > integer > -+ // type) > -+ value = T(-std::numeric_limits<T>::max() - > -+ T(i - uint64_t(std::numeric_limits<T>::max()))); > -+#ifdef FASTFLOAT_VISUAL_STUDIO > -+#pragma warning(pop) > -+#endif > -+ } else { > -+ value = T(i); > -+ } > -+ > -+ answer.ec = std::errc(); > -+ return answer; > -+} > -+ > -+} // namespace fast_float > -+ > -+#endif > -+ > -+#ifndef FASTFLOAT_FAST_TABLE_H > -+#define FASTFLOAT_FAST_TABLE_H > -+ > -+#include <cstdint> > -+ > -+namespace fast_float { > -+ > -+/** > -+ * When mapping numbers from decimal to binary, > -+ * we go from w * 10^q to m * 2^p but we have > -+ * 10^q = 5^q * 2^q, so effectively > -+ * we are trying to match > -+ * w * 2^q * 5^q to m * 2^p. Thus the powers of two > -+ * are not a concern since they can be represented > -+ * exactly using the binary notation, only the powers of five > -+ * affect the binary significand. > -+ */ > -+ > -+/** > -+ * The smallest non-zero float (binary64) is 2^-1074. > -+ * We take as input numbers of the form w x 10^q where w < 2^64. > -+ * We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076. > -+ * However, we have that > -+ * (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^-1074. > -+ * Thus it is possible for a number of the form w * 10^-342 where > -+ * w is a 64-bit value to be a non-zero floating-point number. > -+ ********* > -+ * Any number of form w * 10^309 where w>= 1 is going to be > -+ * infinite in binary64 so we never need to worry about powers > -+ * of 5 greater than 308. > -+ */ > -+template <class unused = void> struct powers_template { > -+ > -+ constexpr static int smallest_power_of_five = > -+ binary_format<double>::smallest_power_of_ten(); > -+ constexpr static int largest_power_of_five = > -+ binary_format<double>::largest_power_of_ten(); > -+ constexpr static int number_of_entries = > -+ 2 * (largest_power_of_five - smallest_power_of_five + 1); > -+ // Powers of five from 5^-342 all the way to 5^308 rounded toward one. > -+ constexpr static uint64_t power_of_five_128[number_of_entries] = { > -+ 0xeef453d6923bd65a, 0x113faa2906a13b3f, > -+ 0x9558b4661b6565f8, 0x4ac7ca59a424c507, > -+ 0xbaaee17fa23ebf76, 0x5d79bcf00d2df649, > -+ 0xe95a99df8ace6f53, 0xf4d82c2c107973dc, > -+ 0x91d8a02bb6c10594, 0x79071b9b8a4be869, > -+ 0xb64ec836a47146f9, 0x9748e2826cdee284, > -+ 0xe3e27a444d8d98b7, 0xfd1b1b2308169b25, > -+ 0x8e6d8c6ab0787f72, 0xfe30f0f5e50e20f7, > -+ 0xb208ef855c969f4f, 0xbdbd2d335e51a935, > -+ 0xde8b2b66b3bc4723, 0xad2c788035e61382, > -+ 0x8b16fb203055ac76, 0x4c3bcb5021afcc31, > -+ 0xaddcb9e83c6b1793, 0xdf4abe242a1bbf3d, > -+ 0xd953e8624b85dd78, 0xd71d6dad34a2af0d, > -+ 0x87d4713d6f33aa6b, 0x8672648c40e5ad68, > -+ 0xa9c98d8ccb009506, 0x680efdaf511f18c2, > -+ 0xd43bf0effdc0ba48, 0x212bd1b2566def2, > -+ 0x84a57695fe98746d, 0x14bb630f7604b57, > -+ 0xa5ced43b7e3e9188, 0x419ea3bd35385e2d, > -+ 0xcf42894a5dce35ea, 0x52064cac828675b9, > -+ 0x818995ce7aa0e1b2, 0x7343efebd1940993, > -+ 0xa1ebfb4219491a1f, 0x1014ebe6c5f90bf8, > -+ 0xca66fa129f9b60a6, 0xd41a26e077774ef6, > -+ 0xfd00b897478238d0, 0x8920b098955522b4, > -+ 0x9e20735e8cb16382, 0x55b46e5f5d5535b0, > -+ 0xc5a890362fddbc62, 0xeb2189f734aa831d, > -+ 0xf712b443bbd52b7b, 0xa5e9ec7501d523e4, > -+ 0x9a6bb0aa55653b2d, 0x47b233c92125366e, > -+ 0xc1069cd4eabe89f8, 0x999ec0bb696e840a, > -+ 0xf148440a256e2c76, 0xc00670ea43ca250d, > -+ 0x96cd2a865764dbca, 0x380406926a5e5728, > -+ 0xbc807527ed3e12bc, 0xc605083704f5ecf2, > -+ 0xeba09271e88d976b, 0xf7864a44c633682e, > -+ 0x93445b8731587ea3, 0x7ab3ee6afbe0211d, > -+ 0xb8157268fdae9e4c, 0x5960ea05bad82964, > -+ 0xe61acf033d1a45df, 0x6fb92487298e33bd, > -+ 0x8fd0c16206306bab, 0xa5d3b6d479f8e056, > -+ 0xb3c4f1ba87bc8696, 0x8f48a4899877186c, > -+ 0xe0b62e2929aba83c, 0x331acdabfe94de87, > -+ 0x8c71dcd9ba0b4925, 0x9ff0c08b7f1d0b14, > -+ 0xaf8e5410288e1b6f, 0x7ecf0ae5ee44dd9, > -+ 0xdb71e91432b1a24a, 0xc9e82cd9f69d6150, > -+ 0x892731ac9faf056e, 0xbe311c083a225cd2, > -+ 0xab70fe17c79ac6ca, 0x6dbd630a48aaf406, > -+ 0xd64d3d9db981787d, 0x92cbbccdad5b108, > -+ 0x85f0468293f0eb4e, 0x25bbf56008c58ea5, > -+ 0xa76c582338ed2621, 0xaf2af2b80af6f24e, > -+ 0xd1476e2c07286faa, 0x1af5af660db4aee1, > -+ 0x82cca4db847945ca, 0x50d98d9fc890ed4d, > -+ 0xa37fce126597973c, 0xe50ff107bab528a0, > -+ 0xcc5fc196fefd7d0c, 0x1e53ed49a96272c8, > -+ 0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7a, > -+ 0x9faacf3df73609b1, 0x77b191618c54e9ac, > -+ 0xc795830d75038c1d, 0xd59df5b9ef6a2417, > -+ 0xf97ae3d0d2446f25, 0x4b0573286b44ad1d, > -+ 0x9becce62836ac577, 0x4ee367f9430aec32, > -+ 0xc2e801fb244576d5, 0x229c41f793cda73f, > -+ 0xf3a20279ed56d48a, 0x6b43527578c1110f, > -+ 0x9845418c345644d6, 0x830a13896b78aaa9, > -+ 0xbe5691ef416bd60c, 0x23cc986bc656d553, > -+ 0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa8, > -+ 0x94b3a202eb1c3f39, 0x7bf7d71432f3d6a9, > -+ 0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc53, > -+ 0xe858ad248f5c22c9, 0xd1b3400f8f9cff68, > -+ 0x91376c36d99995be, 0x23100809b9c21fa1, > -+ 0xb58547448ffffb2d, 0xabd40a0c2832a78a, > -+ 0xe2e69915b3fff9f9, 0x16c90c8f323f516c, > -+ 0x8dd01fad907ffc3b, 0xae3da7d97f6792e3, > -+ 0xb1442798f49ffb4a, 0x99cd11cfdf41779c, > -+ 0xdd95317f31c7fa1d, 0x40405643d711d583, > -+ 0x8a7d3eef7f1cfc52, 0x482835ea666b2572, > -+ 0xad1c8eab5ee43b66, 0xda3243650005eecf, > -+ 0xd863b256369d4a40, 0x90bed43e40076a82, > -+ 0x873e4f75e2224e68, 0x5a7744a6e804a291, > -+ 0xa90de3535aaae202, 0x711515d0a205cb36, > -+ 0xd3515c2831559a83, 0xd5a5b44ca873e03, > -+ 0x8412d9991ed58091, 0xe858790afe9486c2, > -+ 0xa5178fff668ae0b6, 0x626e974dbe39a872, > -+ 0xce5d73ff402d98e3, 0xfb0a3d212dc8128f, > -+ 0x80fa687f881c7f8e, 0x7ce66634bc9d0b99, > -+ 0xa139029f6a239f72, 0x1c1fffc1ebc44e80, > -+ 0xc987434744ac874e, 0xa327ffb266b56220, > -+ 0xfbe9141915d7a922, 0x4bf1ff9f0062baa8, > -+ 0x9d71ac8fada6c9b5, 0x6f773fc3603db4a9, > -+ 0xc4ce17b399107c22, 0xcb550fb4384d21d3, > -+ 0xf6019da07f549b2b, 0x7e2a53a146606a48, > -+ 0x99c102844f94e0fb, 0x2eda7444cbfc426d, > -+ 0xc0314325637a1939, 0xfa911155fefb5308, > -+ 0xf03d93eebc589f88, 0x793555ab7eba27ca, > -+ 0x96267c7535b763b5, 0x4bc1558b2f3458de, > -+ 0xbbb01b9283253ca2, 0x9eb1aaedfb016f16, > -+ 0xea9c227723ee8bcb, 0x465e15a979c1cadc, > -+ 0x92a1958a7675175f, 0xbfacd89ec191ec9, > -+ 0xb749faed14125d36, 0xcef980ec671f667b, > -+ 0xe51c79a85916f484, 0x82b7e12780e7401a, > -+ 0x8f31cc0937ae58d2, 0xd1b2ecb8b0908810, > -+ 0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa15, > -+ 0xdfbdcece67006ac9, 0x67a791e093e1d49a, > -+ 0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e0, > -+ 0xaecc49914078536d, 0x58fae9f773886e18, > -+ 0xda7f5bf590966848, 0xaf39a475506a899e, > -+ 0x888f99797a5e012d, 0x6d8406c952429603, > -+ 0xaab37fd7d8f58178, 0xc8e5087ba6d33b83, > -+ 0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a64, > -+ 0x855c3be0a17fcd26, 0x5cf2eea09a55067f, > -+ 0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481e, > -+ 0xd0601d8efc57b08b, 0xf13b94daf124da26, > -+ 0x823c12795db6ce57, 0x76c53d08d6b70858, > -+ 0xa2cb1717b52481ed, 0x54768c4b0c64ca6e, > -+ 0xcb7ddcdda26da268, 0xa9942f5dcf7dfd09, > -+ 0xfe5d54150b090b02, 0xd3f93b35435d7c4c, > -+ 0x9efa548d26e5a6e1, 0xc47bc5014a1a6daf, > -+ 0xc6b8e9b0709f109a, 0x359ab6419ca1091b, > -+ 0xf867241c8cc6d4c0, 0xc30163d203c94b62, > -+ 0x9b407691d7fc44f8, 0x79e0de63425dcf1d, > -+ 0xc21094364dfb5636, 0x985915fc12f542e4, > -+ 0xf294b943e17a2bc4, 0x3e6f5b7b17b2939d, > -+ 0x979cf3ca6cec5b5a, 0xa705992ceecf9c42, > -+ 0xbd8430bd08277231, 0x50c6ff782a838353, > -+ 0xece53cec4a314ebd, 0xa4f8bf5635246428, > -+ 0x940f4613ae5ed136, 0x871b7795e136be99, > -+ 0xb913179899f68584, 0x28e2557b59846e3f, > -+ 0xe757dd7ec07426e5, 0x331aeada2fe589cf, > -+ 0x9096ea6f3848984f, 0x3ff0d2c85def7621, > -+ 0xb4bca50b065abe63, 0xfed077a756b53a9, > -+ 0xe1ebce4dc7f16dfb, 0xd3e8495912c62894, > -+ 0x8d3360f09cf6e4bd, 0x64712dd7abbbd95c, > -+ 0xb080392cc4349dec, 0xbd8d794d96aacfb3, > -+ 0xdca04777f541c567, 0xecf0d7a0fc5583a0, > -+ 0x89e42caaf9491b60, 0xf41686c49db57244, > -+ 0xac5d37d5b79b6239, 0x311c2875c522ced5, > -+ 0xd77485cb25823ac7, 0x7d633293366b828b, > -+ 0x86a8d39ef77164bc, 0xae5dff9c02033197, > -+ 0xa8530886b54dbdeb, 0xd9f57f830283fdfc, > -+ 0xd267caa862a12d66, 0xd072df63c324fd7b, > -+ 0x8380dea93da4bc60, 0x4247cb9e59f71e6d, > -+ 0xa46116538d0deb78, 0x52d9be85f074e608, > -+ 0xcd795be870516656, 0x67902e276c921f8b, > -+ 0x806bd9714632dff6, 0xba1cd8a3db53b6, > -+ 0xa086cfcd97bf97f3, 0x80e8a40eccd228a4, > -+ 0xc8a883c0fdaf7df0, 0x6122cd128006b2cd, > -+ 0xfad2a4b13d1b5d6c, 0x796b805720085f81, > -+ 0x9cc3a6eec6311a63, 0xcbe3303674053bb0, > -+ 0xc3f490aa77bd60fc, 0xbedbfc4411068a9c, > -+ 0xf4f1b4d515acb93b, 0xee92fb5515482d44, > -+ 0x991711052d8bf3c5, 0x751bdd152d4d1c4a, > -+ 0xbf5cd54678eef0b6, 0xd262d45a78a0635d, > -+ 0xef340a98172aace4, 0x86fb897116c87c34, > -+ 0x9580869f0e7aac0e, 0xd45d35e6ae3d4da0, > -+ 0xbae0a846d2195712, 0x8974836059cca109, > -+ 0xe998d258869facd7, 0x2bd1a438703fc94b, > -+ 0x91ff83775423cc06, 0x7b6306a34627ddcf, > -+ 0xb67f6455292cbf08, 0x1a3bc84c17b1d542, > -+ 0xe41f3d6a7377eeca, 0x20caba5f1d9e4a93, > -+ 0x8e938662882af53e, 0x547eb47b7282ee9c, > -+ 0xb23867fb2a35b28d, 0xe99e619a4f23aa43, > -+ 0xdec681f9f4c31f31, 0x6405fa00e2ec94d4, > -+ 0x8b3c113c38f9f37e, 0xde83bc408dd3dd04, > -+ 0xae0b158b4738705e, 0x9624ab50b148d445, > -+ 0xd98ddaee19068c76, 0x3badd624dd9b0957, > -+ 0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d6, > -+ 0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4c, > -+ 0xd47487cc8470652b, 0x7647c3200069671f, > -+ 0x84c8d4dfd2c63f3b, 0x29ecd9f40041e073, > -+ 0xa5fb0a17c777cf09, 0xf468107100525890, > -+ 0xcf79cc9db955c2cc, 0x7182148d4066eeb4, > -+ 0x81ac1fe293d599bf, 0xc6f14cd848405530, > -+ 0xa21727db38cb002f, 0xb8ada00e5a506a7c, > -+ 0xca9cf1d206fdc03b, 0xa6d90811f0e4851c, > -+ 0xfd442e4688bd304a, 0x908f4a166d1da663, > -+ 0x9e4a9cec15763e2e, 0x9a598e4e043287fe, > -+ 0xc5dd44271ad3cdba, 0x40eff1e1853f29fd, > -+ 0xf7549530e188c128, 0xd12bee59e68ef47c, > -+ 0x9a94dd3e8cf578b9, 0x82bb74f8301958ce, > -+ 0xc13a148e3032d6e7, 0xe36a52363c1faf01, > -+ 0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac1, > -+ 0x96f5600f15a7b7e5, 0x29ab103a5ef8c0b9, > -+ 0xbcb2b812db11a5de, 0x7415d448f6b6f0e7, > -+ 0xebdf661791d60f56, 0x111b495b3464ad21, > -+ 0x936b9fcebb25c995, 0xcab10dd900beec34, > -+ 0xb84687c269ef3bfb, 0x3d5d514f40eea742, > -+ 0xe65829b3046b0afa, 0xcb4a5a3112a5112, > -+ 0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ab, > -+ 0xb3f4e093db73a093, 0x59ed216765690f56, > -+ 0xe0f218b8d25088b8, 0x306869c13ec3532c, > -+ 0x8c974f7383725573, 0x1e414218c73a13fb, > -+ 0xafbd2350644eeacf, 0xe5d1929ef90898fa, > -+ 0xdbac6c247d62a583, 0xdf45f746b74abf39, > -+ 0x894bc396ce5da772, 0x6b8bba8c328eb783, > -+ 0xab9eb47c81f5114f, 0x66ea92f3f326564, > -+ 0xd686619ba27255a2, 0xc80a537b0efefebd, > -+ 0x8613fd0145877585, 0xbd06742ce95f5f36, > -+ 0xa798fc4196e952e7, 0x2c48113823b73704, > -+ 0xd17f3b51fca3a7a0, 0xf75a15862ca504c5, > -+ 0x82ef85133de648c4, 0x9a984d73dbe722fb, > -+ 0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebba, > -+ 0xcc963fee10b7d1b3, 0x318df905079926a8, > -+ 0xffbbcfe994e5c61f, 0xfdf17746497f7052, > -+ 0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa633, > -+ 0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc0, > -+ 0xf9bd690a1b68637b, 0x3dfdce7aa3c673b0, > -+ 0x9c1661a651213e2d, 0x6bea10ca65c084e, > -+ 0xc31bfa0fe5698db8, 0x486e494fcff30a62, > -+ 0xf3e2f893dec3f126, 0x5a89dba3c3efccfa, > -+ 0x986ddb5c6b3a76b7, 0xf89629465a75e01c, > -+ 0xbe89523386091465, 0xf6bbb397f1135823, > -+ 0xee2ba6c0678b597f, 0x746aa07ded582e2c, > -+ 0x94db483840b717ef, 0xa8c2a44eb4571cdc, > -+ 0xba121a4650e4ddeb, 0x92f34d62616ce413, > -+ 0xe896a0d7e51e1566, 0x77b020baf9c81d17, > -+ 0x915e2486ef32cd60, 0xace1474dc1d122e, > -+ 0xb5b5ada8aaff80b8, 0xd819992132456ba, > -+ 0xe3231912d5bf60e6, 0x10e1fff697ed6c69, > -+ 0x8df5efabc5979c8f, 0xca8d3ffa1ef463c1, > -+ 0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb2, > -+ 0xddd0467c64bce4a0, 0xac7cb3f6d05ddbde, > -+ 0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96b, > -+ 0xad4ab7112eb3929d, 0x86c16c98d2c953c6, > -+ 0xd89d64d57a607744, 0xe871c7bf077ba8b7, > -+ 0x87625f056c7c4a8b, 0x11471cd764ad4972, > -+ 0xa93af6c6c79b5d2d, 0xd598e40d3dd89bcf, > -+ 0xd389b47879823479, 0x4aff1d108d4ec2c3, > -+ 0x843610cb4bf160cb, 0xcedf722a585139ba, > -+ 0xa54394fe1eedb8fe, 0xc2974eb4ee658828, > -+ 0xce947a3da6a9273e, 0x733d226229feea32, > -+ 0x811ccc668829b887, 0x806357d5a3f525f, > -+ 0xa163ff802a3426a8, 0xca07c2dcb0cf26f7, > -+ 0xc9bcff6034c13052, 0xfc89b393dd02f0b5, > -+ 0xfc2c3f3841f17c67, 0xbbac2078d443ace2, > -+ 0x9d9ba7832936edc0, 0xd54b944b84aa4c0d, > -+ 0xc5029163f384a931, 0xa9e795e65d4df11, > -+ 0xf64335bcf065d37d, 0x4d4617b5ff4a16d5, > -+ 0x99ea0196163fa42e, 0x504bced1bf8e4e45, > -+ 0xc06481fb9bcf8d39, 0xe45ec2862f71e1d6, > -+ 0xf07da27a82c37088, 0x5d767327bb4e5a4c, > -+ 0x964e858c91ba2655, 0x3a6a07f8d510f86f, > -+ 0xbbe226efb628afea, 0x890489f70a55368b, > -+ 0xeadab0aba3b2dbe5, 0x2b45ac74ccea842e, > -+ 0x92c8ae6b464fc96f, 0x3b0b8bc90012929d, > -+ 0xb77ada0617e3bbcb, 0x9ce6ebb40173744, > -+ 0xe55990879ddcaabd, 0xcc420a6a101d0515, > -+ 0x8f57fa54c2a9eab6, 0x9fa946824a12232d, > -+ 0xb32df8e9f3546564, 0x47939822dc96abf9, > -+ 0xdff9772470297ebd, 0x59787e2b93bc56f7, > -+ 0x8bfbea76c619ef36, 0x57eb4edb3c55b65a, > -+ 0xaefae51477a06b03, 0xede622920b6b23f1, > -+ 0xdab99e59958885c4, 0xe95fab368e45eced, > -+ 0x88b402f7fd75539b, 0x11dbcb0218ebb414, > -+ 0xaae103b5fcd2a881, 0xd652bdc29f26a119, > -+ 0xd59944a37c0752a2, 0x4be76d3346f0495f, > -+ 0x857fcae62d8493a5, 0x6f70a4400c562ddb, > -+ 0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb952, > -+ 0xd097ad07a71f26b2, 0x7e2000a41346a7a7, > -+ 0x825ecc24c873782f, 0x8ed400668c0c28c8, > -+ 0xa2f67f2dfa90563b, 0x728900802f0f32fa, > -+ 0xcbb41ef979346bca, 0x4f2b40a03ad2ffb9, > -+ 0xfea126b7d78186bc, 0xe2f610c84987bfa8, > -+ 0x9f24b832e6b0f436, 0xdd9ca7d2df4d7c9, > -+ 0xc6ede63fa05d3143, 0x91503d1c79720dbb, > -+ 0xf8a95fcf88747d94, 0x75a44c6397ce912a, > -+ 0x9b69dbe1b548ce7c, 0xc986afbe3ee11aba, > -+ 0xc24452da229b021b, 0xfbe85badce996168, > -+ 0xf2d56790ab41c2a2, 0xfae27299423fb9c3, > -+ 0x97c560ba6b0919a5, 0xdccd879fc967d41a, > -+ 0xbdb6b8e905cb600f, 0x5400e987bbc1c920, > -+ 0xed246723473e3813, 0x290123e9aab23b68, > -+ 0x9436c0760c86e30b, 0xf9a0b6720aaf6521, > -+ 0xb94470938fa89bce, 0xf808e40e8d5b3e69, > -+ 0xe7958cb87392c2c2, 0xb60b1d1230b20e04, > -+ 0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c2, > -+ 0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af3, > -+ 0xe2280b6c20dd5232, 0x25c6da63c38de1b0, > -+ 0x8d590723948a535f, 0x579c487e5a38ad0e, > -+ 0xb0af48ec79ace837, 0x2d835a9df0c6d851, > -+ 0xdcdb1b2798182244, 0xf8e431456cf88e65, > -+ 0x8a08f0f8bf0f156b, 0x1b8e9ecb641b58ff, > -+ 0xac8b2d36eed2dac5, 0xe272467e3d222f3f, > -+ 0xd7adf884aa879177, 0x5b0ed81dcc6abb0f, > -+ 0x86ccbb52ea94baea, 0x98e947129fc2b4e9, > -+ 0xa87fea27a539e9a5, 0x3f2398d747b36224, > -+ 0xd29fe4b18e88640e, 0x8eec7f0d19a03aad, > -+ 0x83a3eeeef9153e89, 0x1953cf68300424ac, > -+ 0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd7, > -+ 0xcdb02555653131b6, 0x3792f412cb06794d, > -+ 0x808e17555f3ebf11, 0xe2bbd88bbee40bd0, > -+ 0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec4, > -+ 0xc8de047564d20a8b, 0xf245825a5a445275, > -+ 0xfb158592be068d2e, 0xeed6e2f0f0d56712, > -+ 0x9ced737bb6c4183d, 0x55464dd69685606b, > -+ 0xc428d05aa4751e4c, 0xaa97e14c3c26b886, > -+ 0xf53304714d9265df, 0xd53dd99f4b3066a8, > -+ 0x993fe2c6d07b7fab, 0xe546a8038efe4029, > -+ 0xbf8fdb78849a5f96, 0xde98520472bdd033, > -+ 0xef73d256a5c0f77c, 0x963e66858f6d4440, > -+ 0x95a8637627989aad, 0xdde7001379a44aa8, > -+ 0xbb127c53b17ec159, 0x5560c018580d5d52, > -+ 0xe9d71b689dde71af, 0xaab8f01e6e10b4a6, > -+ 0x9226712162ab070d, 0xcab3961304ca70e8, > -+ 0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d22, > -+ 0xe45c10c42a2b3b05, 0x8cb89a7db77c506a, > -+ 0x8eb98a7a9a5b04e3, 0x77f3608e92adb242, > -+ 0xb267ed1940f1c61c, 0x55f038b237591ed3, > -+ 0xdf01e85f912e37a3, 0x6b6c46dec52f6688, > -+ 0x8b61313bbabce2c6, 0x2323ac4b3b3da015, > -+ 0xae397d8aa96c1b77, 0xabec975e0a0d081a, > -+ 0xd9c7dced53c72255, 0x96e7bd358c904a21, > -+ 0x881cea14545c7575, 0x7e50d64177da2e54, > -+ 0xaa242499697392d2, 0xdde50bd1d5d0b9e9, > -+ 0xd4ad2dbfc3d07787, 0x955e4ec64b44e864, > -+ 0x84ec3c97da624ab4, 0xbd5af13bef0b113e, > -+ 0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58e, > -+ 0xcfb11ead453994ba, 0x67de18eda5814af2, > -+ 0x81ceb32c4b43fcf4, 0x80eacf948770ced7, > -+ 0xa2425ff75e14fc31, 0xa1258379a94d028d, > -+ 0xcad2f7f5359a3b3e, 0x96ee45813a04330, > -+ 0xfd87b5f28300ca0d, 0x8bca9d6e188853fc, > -+ 0x9e74d1b791e07e48, 0x775ea264cf55347e, > -+ 0xc612062576589dda, 0x95364afe032a819e, > -+ 0xf79687aed3eec551, 0x3a83ddbd83f52205, > -+ 0x9abe14cd44753b52, 0xc4926a9672793543, > -+ 0xc16d9a0095928a27, 0x75b7053c0f178294, > -+ 0xf1c90080baf72cb1, 0x5324c68b12dd6339, > -+ 0x971da05074da7bee, 0xd3f6fc16ebca5e04, > -+ 0xbce5086492111aea, 0x88f4bb1ca6bcf585, > -+ 0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6, > -+ 0x9392ee8e921d5d07, 0x3aff322e62439fd0, > -+ 0xb877aa3236a4b449, 0x9befeb9fad487c3, > -+ 0xe69594bec44de15b, 0x4c2ebe687989a9b4, > -+ 0x901d7cf73ab0acd9, 0xf9d37014bf60a11, > -+ 0xb424dc35095cd80f, 0x538484c19ef38c95, > -+ 0xe12e13424bb40e13, 0x2865a5f206b06fba, > -+ 0x8cbccc096f5088cb, 0xf93f87b7442e45d4, > -+ 0xafebff0bcb24aafe, 0xf78f69a51539d749, > -+ 0xdbe6fecebdedd5be, 0xb573440e5a884d1c, > -+ 0x89705f4136b4a597, 0x31680a88f8953031, > -+ 0xabcc77118461cefc, 0xfdc20d2b36ba7c3e, > -+ 0xd6bf94d5e57a42bc, 0x3d32907604691b4d, > -+ 0x8637bd05af6c69b5, 0xa63f9a49c2c1b110, > -+ 0xa7c5ac471b478423, 0xfcf80dc33721d54, > -+ 0xd1b71758e219652b, 0xd3c36113404ea4a9, > -+ 0x83126e978d4fdf3b, 0x645a1cac083126ea, > -+ 0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4, > -+ 0xcccccccccccccccc, 0xcccccccccccccccd, > -+ 0x8000000000000000, 0x0, > -+ 0xa000000000000000, 0x0, > -+ 0xc800000000000000, 0x0, > -+ 0xfa00000000000000, 0x0, > -+ 0x9c40000000000000, 0x0, > -+ 0xc350000000000000, 0x0, > -+ 0xf424000000000000, 0x0, > -+ 0x9896800000000000, 0x0, > -+ 0xbebc200000000000, 0x0, > -+ 0xee6b280000000000, 0x0, > -+ 0x9502f90000000000, 0x0, > -+ 0xba43b74000000000, 0x0, > -+ 0xe8d4a51000000000, 0x0, > -+ 0x9184e72a00000000, 0x0, > -+ 0xb5e620f480000000, 0x0, > -+ 0xe35fa931a0000000, 0x0, > -+ 0x8e1bc9bf04000000, 0x0, > -+ 0xb1a2bc2ec5000000, 0x0, > -+ 0xde0b6b3a76400000, 0x0, > -+ 0x8ac7230489e80000, 0x0, > -+ 0xad78ebc5ac620000, 0x0, > -+ 0xd8d726b7177a8000, 0x0, > -+ 0x878678326eac9000, 0x0, > -+ 0xa968163f0a57b400, 0x0, > -+ 0xd3c21bcecceda100, 0x0, > -+ 0x84595161401484a0, 0x0, > -+ 0xa56fa5b99019a5c8, 0x0, > -+ 0xcecb8f27f4200f3a, 0x0, > -+ 0x813f3978f8940984, 0x4000000000000000, > -+ 0xa18f07d736b90be5, 0x5000000000000000, > -+ 0xc9f2c9cd04674ede, 0xa400000000000000, > -+ 0xfc6f7c4045812296, 0x4d00000000000000, > -+ 0x9dc5ada82b70b59d, 0xf020000000000000, > -+ 0xc5371912364ce305, 0x6c28000000000000, > -+ 0xf684df56c3e01bc6, 0xc732000000000000, > -+ 0x9a130b963a6c115c, 0x3c7f400000000000, > -+ 0xc097ce7bc90715b3, 0x4b9f100000000000, > -+ 0xf0bdc21abb48db20, 0x1e86d40000000000, > -+ 0x96769950b50d88f4, 0x1314448000000000, > -+ 0xbc143fa4e250eb31, 0x17d955a000000000, > -+ 0xeb194f8e1ae525fd, 0x5dcfab0800000000, > -+ 0x92efd1b8d0cf37be, 0x5aa1cae500000000, > -+ 0xb7abc627050305ad, 0xf14a3d9e40000000, > -+ 0xe596b7b0c643c719, 0x6d9ccd05d0000000, > -+ 0x8f7e32ce7bea5c6f, 0xe4820023a2000000, > -+ 0xb35dbf821ae4f38b, 0xdda2802c8a800000, > -+ 0xe0352f62a19e306e, 0xd50b2037ad200000, > -+ 0x8c213d9da502de45, 0x4526f422cc340000, > -+ 0xaf298d050e4395d6, 0x9670b12b7f410000, > -+ 0xdaf3f04651d47b4c, 0x3c0cdd765f114000, > -+ 0x88d8762bf324cd0f, 0xa5880a69fb6ac800, > -+ 0xab0e93b6efee0053, 0x8eea0d047a457a00, > -+ 0xd5d238a4abe98068, 0x72a4904598d6d880, > -+ 0x85a36366eb71f041, 0x47a6da2b7f864750, > -+ 0xa70c3c40a64e6c51, 0x999090b65f67d924, > -+ 0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d, > -+ 0x82818f1281ed449f, 0xbff8f10e7a8921a4, > -+ 0xa321f2d7226895c7, 0xaff72d52192b6a0d, > -+ 0xcbea6f8ceb02bb39, 0x9bf4f8a69f764490, > -+ 0xfee50b7025c36a08, 0x2f236d04753d5b4, > -+ 0x9f4f2726179a2245, 0x1d762422c946590, > -+ 0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef5, > -+ 0xf8ebad2b84e0d58b, 0xd2e0898765a7deb2, > -+ 0x9b934c3b330c8577, 0x63cc55f49f88eb2f, > -+ 0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fb, > -+ 0xf316271c7fc3908a, 0x8bef464e3945ef7a, > -+ 0x97edd871cfda3a56, 0x97758bf0e3cbb5ac, > -+ 0xbde94e8e43d0c8ec, 0x3d52eeed1cbea317, > -+ 0xed63a231d4c4fb27, 0x4ca7aaa863ee4bdd, > -+ 0x945e455f24fb1cf8, 0x8fe8caa93e74ef6a, > -+ 0xb975d6b6ee39e436, 0xb3e2fd538e122b44, > -+ 0xe7d34c64a9c85d44, 0x60dbbca87196b616, > -+ 0x90e40fbeea1d3a4a, 0xbc8955e946fe31cd, > -+ 0xb51d13aea4a488dd, 0x6babab6398bdbe41, > -+ 0xe264589a4dcdab14, 0xc696963c7eed2dd1, > -+ 0x8d7eb76070a08aec, 0xfc1e1de5cf543ca2, > -+ 0xb0de65388cc8ada8, 0x3b25a55f43294bcb, > -+ 0xdd15fe86affad912, 0x49ef0eb713f39ebe, > -+ 0x8a2dbf142dfcc7ab, 0x6e3569326c784337, > -+ 0xacb92ed9397bf996, 0x49c2c37f07965404, > -+ 0xd7e77a8f87daf7fb, 0xdc33745ec97be906, > -+ 0x86f0ac99b4e8dafd, 0x69a028bb3ded71a3, > -+ 0xa8acd7c0222311bc, 0xc40832ea0d68ce0c, > -+ 0xd2d80db02aabd62b, 0xf50a3fa490c30190, > -+ 0x83c7088e1aab65db, 0x792667c6da79e0fa, > -+ 0xa4b8cab1a1563f52, 0x577001b891185938, > -+ 0xcde6fd5e09abcf26, 0xed4c0226b55e6f86, > -+ 0x80b05e5ac60b6178, 0x544f8158315b05b4, > -+ 0xa0dc75f1778e39d6, 0x696361ae3db1c721, > -+ 0xc913936dd571c84c, 0x3bc3a19cd1e38e9, > -+ 0xfb5878494ace3a5f, 0x4ab48a04065c723, > -+ 0x9d174b2dcec0e47b, 0x62eb0d64283f9c76, > -+ 0xc45d1df942711d9a, 0x3ba5d0bd324f8394, > -+ 0xf5746577930d6500, 0xca8f44ec7ee36479, > -+ 0x9968bf6abbe85f20, 0x7e998b13cf4e1ecb, > -+ 0xbfc2ef456ae276e8, 0x9e3fedd8c321a67e, > -+ 0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101e, > -+ 0x95d04aee3b80ece5, 0xbba1f1d158724a12, > -+ 0xbb445da9ca61281f, 0x2a8a6e45ae8edc97, > -+ 0xea1575143cf97226, 0xf52d09d71a3293bd, > -+ 0x924d692ca61be758, 0x593c2626705f9c56, > -+ 0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836c, > -+ 0xe498f455c38b997a, 0xb6dfb9c0f956447, > -+ 0x8edf98b59a373fec, 0x4724bd4189bd5eac, > -+ 0xb2977ee300c50fe7, 0x58edec91ec2cb657, > -+ 0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ed, > -+ 0x8b865b215899f46c, 0xbd79e0d20082ee74, > -+ 0xae67f1e9aec07187, 0xecd8590680a3aa11, > -+ 0xda01ee641a708de9, 0xe80e6f4820cc9495, > -+ 0x884134fe908658b2, 0x3109058d147fdcdd, > -+ 0xaa51823e34a7eede, 0xbd4b46f0599fd415, > -+ 0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91a, > -+ 0x850fadc09923329e, 0x3e2cf6bc604ddb0, > -+ 0xa6539930bf6bff45, 0x84db8346b786151c, > -+ 0xcfe87f7cef46ff16, 0xe612641865679a63, > -+ 0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07e, > -+ 0xa26da3999aef7749, 0xe3be5e330f38f09d, > -+ 0xcb090c8001ab551c, 0x5cadf5bfd3072cc5, > -+ 0xfdcb4fa002162a63, 0x73d9732fc7c8f7f6, > -+ 0x9e9f11c4014dda7e, 0x2867e7fddcdd9afa, > -+ 0xc646d63501a1511d, 0xb281e1fd541501b8, > -+ 0xf7d88bc24209a565, 0x1f225a7ca91a4226, > -+ 0x9ae757596946075f, 0x3375788de9b06958, > -+ 0xc1a12d2fc3978937, 0x52d6b1641c83ae, > -+ 0xf209787bb47d6b84, 0xc0678c5dbd23a49a, > -+ 0x9745eb4d50ce6332, 0xf840b7ba963646e0, > -+ 0xbd176620a501fbff, 0xb650e5a93bc3d898, > -+ 0xec5d3fa8ce427aff, 0xa3e51f138ab4cebe, > -+ 0x93ba47c980e98cdf, 0xc66f336c36b10137, > -+ 0xb8a8d9bbe123f017, 0xb80b0047445d4184, > -+ 0xe6d3102ad96cec1d, 0xa60dc059157491e5, > -+ 0x9043ea1ac7e41392, 0x87c89837ad68db2f, > -+ 0xb454e4a179dd1877, 0x29babe4598c311fb, > -+ 0xe16a1dc9d8545e94, 0xf4296dd6fef3d67a, > -+ 0x8ce2529e2734bb1d, 0x1899e4a65f58660c, > -+ 0xb01ae745b101e9e4, 0x5ec05dcff72e7f8f, > -+ 0xdc21a1171d42645d, 0x76707543f4fa1f73, > -+ 0x899504ae72497eba, 0x6a06494a791c53a8, > -+ 0xabfa45da0edbde69, 0x487db9d17636892, > -+ 0xd6f8d7509292d603, 0x45a9d2845d3c42b6, > -+ 0x865b86925b9bc5c2, 0xb8a2392ba45a9b2, > -+ 0xa7f26836f282b732, 0x8e6cac7768d7141e, > -+ 0xd1ef0244af2364ff, 0x3207d795430cd926, > -+ 0x8335616aed761f1f, 0x7f44e6bd49e807b8, > -+ 0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a6, > -+ 0xcd036837130890a1, 0x36dba887c37a8c0f, > -+ 0x802221226be55a64, 0xc2494954da2c9789, > -+ 0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6c, > -+ 0xc83553c5c8965d3d, 0x6f92829494e5acc7, > -+ 0xfa42a8b73abbf48c, 0xcb772339ba1f17f9, > -+ 0x9c69a97284b578d7, 0xff2a760414536efb, > -+ 0xc38413cf25e2d70d, 0xfef5138519684aba, > -+ 0xf46518c2ef5b8cd1, 0x7eb258665fc25d69, > -+ 0x98bf2f79d5993802, 0xef2f773ffbd97a61, > -+ 0xbeeefb584aff8603, 0xaafb550ffacfd8fa, > -+ 0xeeaaba2e5dbf6784, 0x95ba2a53f983cf38, > -+ 0x952ab45cfa97a0b2, 0xdd945a747bf26183, > -+ 0xba756174393d88df, 0x94f971119aeef9e4, > -+ 0xe912b9d1478ceb17, 0x7a37cd5601aab85d, > -+ 0x91abb422ccb812ee, 0xac62e055c10ab33a, > -+ 0xb616a12b7fe617aa, 0x577b986b314d6009, > -+ 0xe39c49765fdf9d94, 0xed5a7e85fda0b80b, > -+ 0x8e41ade9fbebc27d, 0x14588f13be847307, > -+ 0xb1d219647ae6b31c, 0x596eb2d8ae258fc8, > -+ 0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bb, > -+ 0x8aec23d680043bee, 0x25de7bb9480d5854, > -+ 0xada72ccc20054ae9, 0xaf561aa79a10ae6a, > -+ 0xd910f7ff28069da4, 0x1b2ba1518094da04, > -+ 0x87aa9aff79042286, 0x90fb44d2f05d0842, > -+ 0xa99541bf57452b28, 0x353a1607ac744a53, > -+ 0xd3fa922f2d1675f2, 0x42889b8997915ce8, > -+ 0x847c9b5d7c2e09b7, 0x69956135febada11, > -+ 0xa59bc234db398c25, 0x43fab9837e699095, > -+ 0xcf02b2c21207ef2e, 0x94f967e45e03f4bb, > -+ 0x8161afb94b44f57d, 0x1d1be0eebac278f5, > -+ 0xa1ba1ba79e1632dc, 0x6462d92a69731732, > -+ 0xca28a291859bbf93, 0x7d7b8f7503cfdcfe, > -+ 0xfcb2cb35e702af78, 0x5cda735244c3d43e, > -+ 0x9defbf01b061adab, 0x3a0888136afa64a7, > -+ 0xc56baec21c7a1916, 0x88aaa1845b8fdd0, > -+ 0xf6c69a72a3989f5b, 0x8aad549e57273d45, > -+ 0x9a3c2087a63f6399, 0x36ac54e2f678864b, > -+ 0xc0cb28a98fcf3c7f, 0x84576a1bb416a7dd, > -+ 0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d5, > -+ 0x969eb7c47859e743, 0x9f644ae5a4b1b325, > -+ 0xbc4665b596706114, 0x873d5d9f0dde1fee, > -+ 0xeb57ff22fc0c7959, 0xa90cb506d155a7ea, > -+ 0x9316ff75dd87cbd8, 0x9a7f12442d588f2, > -+ 0xb7dcbf5354e9bece, 0xc11ed6d538aeb2f, > -+ 0xe5d3ef282a242e81, 0x8f1668c8a86da5fa, > -+ 0x8fa475791a569d10, 0xf96e017d694487bc, > -+ 0xb38d92d760ec4455, 0x37c981dcc395a9ac, > -+ 0xe070f78d3927556a, 0x85bbe253f47b1417, > -+ 0x8c469ab843b89562, 0x93956d7478ccec8e, > -+ 0xaf58416654a6babb, 0x387ac8d1970027b2, > -+ 0xdb2e51bfe9d0696a, 0x6997b05fcc0319e, > -+ 0x88fcf317f22241e2, 0x441fece3bdf81f03, > -+ 0xab3c2fddeeaad25a, 0xd527e81cad7626c3, > -+ 0xd60b3bd56a5586f1, 0x8a71e223d8d3b074, > -+ 0x85c7056562757456, 0xf6872d5667844e49, > -+ 0xa738c6bebb12d16c, 0xb428f8ac016561db, > -+ 0xd106f86e69d785c7, 0xe13336d701beba52, > -+ 0x82a45b450226b39c, 0xecc0024661173473, > -+ 0xa34d721642b06084, 0x27f002d7f95d0190, > -+ 0xcc20ce9bd35c78a5, 0x31ec038df7b441f4, > -+ 0xff290242c83396ce, 0x7e67047175a15271, > -+ 0x9f79a169bd203e41, 0xf0062c6e984d386, > -+ 0xc75809c42c684dd1, 0x52c07b78a3e60868, > -+ 0xf92e0c3537826145, 0xa7709a56ccdf8a82, > -+ 0x9bbcc7a142b17ccb, 0x88a66076400bb691, > -+ 0xc2abf989935ddbfe, 0x6acff893d00ea435, > -+ 0xf356f7ebf83552fe, 0x583f6b8c4124d43, > -+ 0x98165af37b2153de, 0xc3727a337a8b704a, > -+ 0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5c, > -+ 0xeda2ee1c7064130c, 0x1162def06f79df73, > -+ 0x9485d4d1c63e8be7, 0x8addcb5645ac2ba8, > -+ 0xb9a74a0637ce2ee1, 0x6d953e2bd7173692, > -+ 0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0437, > -+ 0x910ab1d4db9914a0, 0x1d9c9892400a22a2, > -+ 0xb54d5e4a127f59c8, 0x2503beb6d00cab4b, > -+ 0xe2a0b5dc971f303a, 0x2e44ae64840fd61d, > -+ 0x8da471a9de737e24, 0x5ceaecfed289e5d2, > -+ 0xb10d8e1456105dad, 0x7425a83e872c5f47, > -+ 0xdd50f1996b947518, 0xd12f124e28f77719, > -+ 0x8a5296ffe33cc92f, 0x82bd6b70d99aaa6f, > -+ 0xace73cbfdc0bfb7b, 0x636cc64d1001550b, > -+ 0xd8210befd30efa5a, 0x3c47f7e05401aa4e, > -+ 0x8714a775e3e95c78, 0x65acfaec34810a71, > -+ 0xa8d9d1535ce3b396, 0x7f1839a741a14d0d, > -+ 0xd31045a8341ca07c, 0x1ede48111209a050, > -+ 0x83ea2b892091e44d, 0x934aed0aab460432, > -+ 0xa4e4b66b68b65d60, 0xf81da84d5617853f, > -+ 0xce1de40642e3f4b9, 0x36251260ab9d668e, > -+ 0x80d2ae83e9ce78f3, 0xc1d72b7c6b426019, > -+ 0xa1075a24e4421730, 0xb24cf65b8612f81f, > -+ 0xc94930ae1d529cfc, 0xdee033f26797b627, > -+ 0xfb9b7cd9a4a7443c, 0x169840ef017da3b1, > -+ 0x9d412e0806e88aa5, 0x8e1f289560ee864e, > -+ 0xc491798a08a2ad4e, 0xf1a6f2bab92a27e2, > -+ 0xf5b5d7ec8acb58a2, 0xae10af696774b1db, > -+ 0x9991a6f3d6bf1765, 0xacca6da1e0a8ef29, > -+ 0xbff610b0cc6edd3f, 0x17fd090a58d32af3, > -+ 0xeff394dcff8a948e, 0xddfc4b4cef07f5b0, > -+ 0x95f83d0a1fb69cd9, 0x4abdaf101564f98e, > -+ 0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f1, > -+ 0xea53df5fd18d5513, 0x84c86189216dc5ed, > -+ 0x92746b9be2f8552c, 0x32fd3cf5b4e49bb4, > -+ 0xb7118682dbb66a77, 0x3fbc8c33221dc2a1, > -+ 0xe4d5e82392a40515, 0xfabaf3feaa5334a, > -+ 0x8f05b1163ba6832d, 0x29cb4d87f2a7400e, > -+ 0xb2c71d5bca9023f8, 0x743e20e9ef511012, > -+ 0xdf78e4b2bd342cf6, 0x914da9246b255416, > -+ 0x8bab8eefb6409c1a, 0x1ad089b6c2f7548e, > -+ 0xae9672aba3d0c320, 0xa184ac2473b529b1, > -+ 0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741e, > -+ 0x8865899617fb1871, 0x7e2fa67c7a658892, > -+ 0xaa7eebfb9df9de8d, 0xddbb901b98feeab7, > -+ 0xd51ea6fa85785631, 0x552a74227f3ea565, > -+ 0x8533285c936b35de, 0xd53a88958f87275f, > -+ 0xa67ff273b8460356, 0x8a892abaf368f137, > -+ 0xd01fef10a657842c, 0x2d2b7569b0432d85, > -+ 0x8213f56a67f6b29b, 0x9c3b29620e29fc73, > -+ 0xa298f2c501f45f42, 0x8349f3ba91b47b8f, > -+ 0xcb3f2f7642717713, 0x241c70a936219a73, > -+ 0xfe0efb53d30dd4d7, 0xed238cd383aa0110, > -+ 0x9ec95d1463e8a506, 0xf4363804324a40aa, > -+ 0xc67bb4597ce2ce48, 0xb143c6053edcd0d5, > -+ 0xf81aa16fdc1b81da, 0xdd94b7868e94050a, > -+ 0x9b10a4e5e9913128, 0xca7cf2b4191c8326, > -+ 0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f0, > -+ 0xf24a01a73cf2dccf, 0xbc633b39673c8cec, > -+ 0x976e41088617ca01, 0xd5be0503e085d813, > -+ 0xbd49d14aa79dbc82, 0x4b2d8644d8a74e18, > -+ 0xec9c459d51852ba2, 0xddf8e7d60ed1219e, > -+ 0x93e1ab8252f33b45, 0xcabb90e5c942b503, > -+ 0xb8da1662e7b00a17, 0x3d6a751f3b936243, > -+ 0xe7109bfba19c0c9d, 0xcc512670a783ad4, > -+ 0x906a617d450187e2, 0x27fb2b80668b24c5, > -+ 0xb484f9dc9641e9da, 0xb1f9f660802dedf6, > -+ 0xe1a63853bbd26451, 0x5e7873f8a0396973, > -+ 0x8d07e33455637eb2, 0xdb0b487b6423e1e8, > -+ 0xb049dc016abc5e5f, 0x91ce1a9a3d2cda62, > -+ 0xdc5c5301c56b75f7, 0x7641a140cc7810fb, > -+ 0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9d, > -+ 0xac2820d9623bf429, 0x546345fa9fbdcd44, > -+ 0xd732290fbacaf133, 0xa97c177947ad4095, > -+ 0x867f59a9d4bed6c0, 0x49ed8eabcccc485d, > -+ 0xa81f301449ee8c70, 0x5c68f256bfff5a74, > -+ 0xd226fc195c6a2f8c, 0x73832eec6fff3111, > -+ 0x83585d8fd9c25db7, 0xc831fd53c5ff7eab, > -+ 0xa42e74f3d032f525, 0xba3e7ca8b77f5e55, > -+ 0xcd3a1230c43fb26f, 0x28ce1bd2e55f35eb, > -+ 0x80444b5e7aa7cf85, 0x7980d163cf5b81b3, > -+ 0xa0555e361951c366, 0xd7e105bcc332621f, > -+ 0xc86ab5c39fa63440, 0x8dd9472bf3fefaa7, > -+ 0xfa856334878fc150, 0xb14f98f6f0feb951, > -+ 0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d3, > -+ 0xc3b8358109e84f07, 0xa862f80ec4700c8, > -+ 0xf4a642e14c6262c8, 0xcd27bb612758c0fa, > -+ 0x98e7e9cccfbd7dbd, 0x8038d51cb897789c, > -+ 0xbf21e44003acdd2c, 0xe0470a63e6bd56c3, > -+ 0xeeea5d5004981478, 0x1858ccfce06cac74, > -+ 0x95527a5202df0ccb, 0xf37801e0c43ebc8, > -+ 0xbaa718e68396cffd, 0xd30560258f54e6ba, > -+ 0xe950df20247c83fd, 0x47c6b82ef32a2069, > -+ 0x91d28b7416cdd27e, 0x4cdc331d57fa5441, > -+ 0xb6472e511c81471d, 0xe0133fe4adf8e952, > -+ 0xe3d8f9e563a198e5, 0x58180fddd97723a6, > -+ 0x8e679c2f5e44ff8f, 0x570f09eaa7ea7648, > -+ }; > -+}; > -+ > -+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE > -+ > -+template <class unused> > -+constexpr uint64_t > -+ powers_template<unused>::power_of_five_128[number_of_entries]; > -+ > -+#endif > -+ > -+using powers = powers_template<>; > -+ > -+} // namespace fast_float > -+ > -+#endif > -+ > -+#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H > -+#define FASTFLOAT_DECIMAL_TO_BINARY_H > -+ > -+#include <cfloat> > -+#include <cinttypes> > -+#include <cmath> > -+#include <cstdint> > -+#include <cstdlib> > -+#include <cstring> > -+ > -+namespace fast_float { > -+ > -+// This will compute or rather approximate w * 5**q and return a pair of > 64-bit > -+// words approximating the result, with the "high" part corresponding to > the > -+// most significant bits and the low part corresponding to the least > significant > -+// bits. > -+// > -+template <int bit_precision> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128 > -+compute_product_approximation(int64_t q, uint64_t w) { > -+ const int index = 2 * int(q - powers::smallest_power_of_five); > -+ // For small values of q, e.g., q in [0,27], the answer is always exact > -+ // because The line value128 firstproduct = full_multiplication(w, > -+ // power_of_five_128[index]); gives the exact answer. > -+ value128 firstproduct = > -+ full_multiplication(w, powers::power_of_five_128[index]); > -+ static_assert((bit_precision >= 0) && (bit_precision <= 64), > -+ " precision should be in (0,64]"); > -+ constexpr uint64_t precision_mask = > -+ (bit_precision < 64) ? (uint64_t(0xFFFFFFFFFFFFFFFF) >> > bit_precision) > -+ : uint64_t(0xFFFFFFFFFFFFFFFF); > -+ if ((firstproduct.high & precision_mask) == > -+ precision_mask) { // could further guard with (lower + w < lower) > -+ // regarding the second product, we only need secondproduct.high, > but our > -+ // expectation is that the compiler will optimize this extra work > away if > -+ // needed. > -+ value128 secondproduct = > -+ full_multiplication(w, powers::power_of_five_128[index + 1]); > -+ firstproduct.low += secondproduct.high; > -+ if (secondproduct.high > firstproduct.low) { > -+ firstproduct.high++; > -+ } > -+ } > -+ return firstproduct; > -+} > -+ > -+namespace detail { > -+/** > -+ * For q in (0,350), we have that > -+ * f = (((152170 + 65536) * q ) >> 16); > -+ * is equal to > -+ * floor(p) + q > -+ * where > -+ * p = log(5**q)/log(2) = q * log(5)/log(2) > -+ * > -+ * For negative values of q in (-400,0), we have that > -+ * f = (((152170 + 65536) * q ) >> 16); > -+ * is equal to > -+ * -ceil(p) + q > -+ * where > -+ * p = log(5**-q)/log(2) = -q * log(5)/log(2) > -+ */ > -+constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept { > -+ return (((152170 + 65536) * q) >> 16) + 63; > -+} > -+} // namespace detail > -+ > -+// create an adjusted mantissa, biased by the invalid power2 > -+// for significant digits already multiplied by 10 ** q. > -+template <typename binary> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 adjusted_mantissa > -+compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept { > -+ int hilz = int(w >> 63) ^ 1; > -+ adjusted_mantissa answer; > -+ answer.mantissa = w << hilz; > -+ int bias = binary::mantissa_explicit_bits() - > binary::minimum_exponent(); > -+ answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - > 62 + > -+ invalid_am_bias); > -+ return answer; > -+} > -+ > -+// w * 10 ** q, without rounding the representation up. > -+// the power2 in the exponent will be adjusted by invalid_am_bias. > -+template <typename binary> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa > -+compute_error(int64_t q, uint64_t w) noexcept { > -+ int lz = leading_zeroes(w); > -+ w <<= lz; > -+ value128 product = > -+ compute_product_approximation<binary::mantissa_explicit_bits() + > 3>(q, w); > -+ return compute_error_scaled<binary>(q, product.high, lz); > -+} > -+ > -+// w * 10 ** q > -+// The returned value should be a valid ieee64 number that simply need > to be > -+// packed. However, in some very rare cases, the computation will fail. > In such > -+// cases, we return an adjusted_mantissa with a negative power of 2: the > caller > -+// should recompute in such cases. > -+template <typename binary> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa > -+compute_float(int64_t q, uint64_t w) noexcept { > -+ adjusted_mantissa answer; > -+ if ((w == 0) || (q < binary::smallest_power_of_ten())) { > -+ answer.power2 = 0; > -+ answer.mantissa = 0; > -+ // result should be zero > -+ return answer; > -+ } > -+ if (q > binary::largest_power_of_ten()) { > -+ // we want to get infinity: > -+ answer.power2 = binary::infinite_power(); > -+ answer.mantissa = 0; > -+ return answer; > -+ } > -+ // At this point in time q is in [powers::smallest_power_of_five, > -+ // powers::largest_power_of_five]. > -+ > -+ // We want the most significant bit of i to be 1. Shift if needed. > -+ int lz = leading_zeroes(w); > -+ w <<= lz; > -+ > -+ // The required precision is binary::mantissa_explicit_bits() + 3 > because > -+ // 1. We need the implicit bit > -+ // 2. We need an extra bit for rounding purposes > -+ // 3. We might lose a bit due to the "upperbit" routine (result too > small, > -+ // requiring a shift) > -+ > -+ value128 product = > -+ compute_product_approximation<binary::mantissa_explicit_bits() + > 3>(q, w); > -+ // The computed 'product' is always sufficient. > -+ // Mathematical proof: > -+ // Noble Mushtak and Daniel Lemire, Fast Number Parsing Without > Fallback (to > -+ // appear) See script/mushtak_lemire.py > -+ > -+ // The "compute_product_approximation" function can be slightly slower > than a > -+ // branchless approach: value128 product = compute_product(q, w); but > in > -+ // practice, we can win big with the compute_product_approximation if > its > -+ // additional branch is easily predicted. Which is best is data > specific. > -+ int upperbit = int(product.high >> 63); > -+ int shift = upperbit + 64 - binary::mantissa_explicit_bits() - 3; > -+ > -+ answer.mantissa = product.high >> shift; > -+ > -+ answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz - > -+ binary::minimum_exponent()); > -+ if (answer.power2 <= 0) { // we have a subnormal? > -+ // Here have that answer.power2 <= 0 so -answer.power2 >= 0 > -+ if (-answer.power2 + 1 >= > -+ 64) { // if we have more than 64 bits below the minimum > exponent, you > -+ // have a zero for sure. > -+ answer.power2 = 0; > -+ answer.mantissa = 0; > -+ // result should be zero > -+ return answer; > -+ } > -+ // next line is safe because -answer.power2 + 1 < 64 > -+ answer.mantissa >>= -answer.power2 + 1; > -+ // Thankfully, we can't have both "round-to-even" and subnormals > because > -+ // "round-to-even" only occurs for powers close to 0. > -+ answer.mantissa += (answer.mantissa & 1); // round up > -+ answer.mantissa >>= 1; > -+ // There is a weird scenario where we don't have a subnormal but > just. > -+ // Suppose we start with 2.2250738585072013e-308, we end up > -+ // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal > -+ // whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to > round > -+ // up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer > -+ // subnormal, but we can only know this after rounding. > -+ // So we only declare a subnormal if we are smaller than the > threshold. > -+ answer.power2 = > -+ (answer.mantissa < (uint64_t(1) << > binary::mantissa_explicit_bits())) > -+ ? 0 > -+ : 1; > -+ return answer; > -+ } > -+ > -+ // usually, we round *up*, but if we fall right in between and and we > have an > -+ // even basis, we need to round down > -+ // We are only concerned with the cases where 5**q fits in single > 64-bit word. > -+ if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) > && > -+ (q <= binary::max_exponent_round_to_even()) && > -+ ((answer.mantissa & 3) == 1)) { // we may fall between two floats! > -+ // To be in-between two floats we need that in doing > -+ // answer.mantissa = product.high >> (upperbit + 64 - > -+ // binary::mantissa_explicit_bits() - 3); > -+ // ... we dropped out only zeroes. But if this happened, then we can > go > -+ // back!!! > -+ if ((answer.mantissa << shift) == product.high) { > -+ answer.mantissa &= ~uint64_t(1); // flip it so that we do not > round up > -+ } > -+ } > -+ > -+ answer.mantissa += (answer.mantissa & 1); // round up > -+ answer.mantissa >>= 1; > -+ if (answer.mantissa >= (uint64_t(2) << > binary::mantissa_explicit_bits())) { > -+ answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits()); > -+ answer.power2++; // undo previous addition > -+ } > -+ > -+ answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits()); > -+ if (answer.power2 >= binary::infinite_power()) { // infinity > -+ answer.power2 = binary::infinite_power(); > -+ answer.mantissa = 0; > -+ } > -+ return answer; > -+} > -+ > -+} // namespace fast_float > -+ > -+#endif > -+ > -+#ifndef FASTFLOAT_BIGINT_H > -+#define FASTFLOAT_BIGINT_H > -+ > -+#include <algorithm> > -+#include <cstdint> > -+#include <climits> > -+#include <cstring> > -+ > -+ > -+namespace fast_float { > -+ > -+// the limb width: we want efficient multiplication of double the bits in > -+// limb, or for 64-bit limbs, at least 64-bit multiplication where we can > -+// extract the high and low parts efficiently. this is every 64-bit > -+// architecture except for sparc, which emulates 128-bit multiplication. > -+// we might have platforms where `CHAR_BIT` is not 8, so let's avoid > -+// doing `8 * sizeof(limb)`. > -+#if defined(FASTFLOAT_64BIT) && !defined(__sparc) > -+#define FASTFLOAT_64BIT_LIMB 1 > -+typedef uint64_t limb; > -+constexpr size_t limb_bits = 64; > -+#else > -+#define FASTFLOAT_32BIT_LIMB > -+typedef uint32_t limb; > -+constexpr size_t limb_bits = 32; > -+#endif > -+ > -+typedef span<limb> limb_span; > -+ > -+// number of bits in a bigint. this needs to be at least the number > -+// of bits required to store the largest bigint, which is > -+// `log2(10**(digits + max_exp))`, or `log2(10**(767 + 342))`, or > -+// ~3600 bits, so we round to 4000. > -+constexpr size_t bigint_bits = 4000; > -+constexpr size_t bigint_limbs = bigint_bits / limb_bits; > -+ > -+// vector-like type that is allocated on the stack. the entire > -+// buffer is pre-allocated, and only the length changes. > -+template <uint16_t size> struct stackvec { > -+ limb data[size]; > -+ // we never need more than 150 limbs > -+ uint16_t length{0}; > -+ > -+ stackvec() = default; > -+ stackvec(const stackvec &) = delete; > -+ stackvec &operator=(const stackvec &) = delete; > -+ stackvec(stackvec &&) = delete; > -+ stackvec &operator=(stackvec &&other) = delete; > -+ > -+ // create stack vector from existing limb span. > -+ FASTFLOAT_CONSTEXPR20 stackvec(limb_span s) { > -+ FASTFLOAT_ASSERT(try_extend(s)); > -+ } > -+ > -+ FASTFLOAT_CONSTEXPR14 limb &operator[](size_t index) noexcept { > -+ FASTFLOAT_DEBUG_ASSERT(index < length); > -+ return data[index]; > -+ } > -+ FASTFLOAT_CONSTEXPR14 const limb &operator[](size_t index) const > noexcept { > -+ FASTFLOAT_DEBUG_ASSERT(index < length); > -+ return data[index]; > -+ } > -+ // index from the end of the container > -+ FASTFLOAT_CONSTEXPR14 const limb &rindex(size_t index) const noexcept { > -+ FASTFLOAT_DEBUG_ASSERT(index < length); > -+ size_t rindex = length - index - 1; > -+ return data[rindex]; > -+ } > -+ > -+ // set the length, without bounds checking. > -+ FASTFLOAT_CONSTEXPR14 void set_len(size_t len) noexcept { > -+ length = uint16_t(len); > -+ } > -+ constexpr size_t len() const noexcept { return length; } > -+ constexpr bool is_empty() const noexcept { return length == 0; } > -+ constexpr size_t capacity() const noexcept { return size; } > -+ // append item to vector, without bounds checking > -+ FASTFLOAT_CONSTEXPR14 void push_unchecked(limb value) noexcept { > -+ data[length] = value; > -+ length++; > -+ } > -+ // append item to vector, returning if item was added > -+ FASTFLOAT_CONSTEXPR14 bool try_push(limb value) noexcept { > -+ if (len() < capacity()) { > -+ push_unchecked(value); > -+ return true; > -+ } else { > -+ return false; > -+ } > -+ } > -+ // add items to the vector, from a span, without bounds checking > -+ FASTFLOAT_CONSTEXPR20 void extend_unchecked(limb_span s) noexcept { > -+ limb *ptr = data + length; > -+ std::copy_n(s.ptr, s.len(), ptr); > -+ set_len(len() + s.len()); > -+ } > -+ // try to add items to the vector, returning if items were added > -+ FASTFLOAT_CONSTEXPR20 bool try_extend(limb_span s) noexcept { > -+ if (len() + s.len() <= capacity()) { > -+ extend_unchecked(s); > -+ return true; > -+ } else { > -+ return false; > -+ } > -+ } > -+ // resize the vector, without bounds checking > -+ // if the new size is longer than the vector, assign value to each > -+ // appended item. > -+ FASTFLOAT_CONSTEXPR20 > -+ void resize_unchecked(size_t new_len, limb value) noexcept { > -+ if (new_len > len()) { > -+ size_t count = new_len - len(); > -+ limb *first = data + len(); > -+ limb *last = first + count; > -+ ::std::fill(first, last, value); > -+ set_len(new_len); > -+ } else { > -+ set_len(new_len); > -+ } > -+ } > -+ // try to resize the vector, returning if the vector was resized. > -+ FASTFLOAT_CONSTEXPR20 bool try_resize(size_t new_len, limb value) > noexcept { > -+ if (new_len > capacity()) { > -+ return false; > -+ } else { > -+ resize_unchecked(new_len, value); > -+ return true; > -+ } > -+ } > -+ // check if any limbs are non-zero after the given index. > -+ // this needs to be done in reverse order, since the index > -+ // is relative to the most significant limbs. > -+ FASTFLOAT_CONSTEXPR14 bool nonzero(size_t index) const noexcept { > -+ while (index < len()) { > -+ if (rindex(index) != 0) { > -+ return true; > -+ } > -+ index++; > -+ } > -+ return false; > -+ } > -+ // normalize the big integer, so most-significant zero limbs are > removed. > -+ FASTFLOAT_CONSTEXPR14 void normalize() noexcept { > -+ while (len() > 0 && rindex(0) == 0) { > -+ length--; > -+ } > -+ } > -+}; > -+ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t > -+empty_hi64(bool &truncated) noexcept { > -+ truncated = false; > -+ return 0; > -+} > -+ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t > -+uint64_hi64(uint64_t r0, bool &truncated) noexcept { > -+ truncated = false; > -+ int shl = leading_zeroes(r0); > -+ return r0 << shl; > -+} > -+ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t > -+uint64_hi64(uint64_t r0, uint64_t r1, bool &truncated) noexcept { > -+ int shl = leading_zeroes(r0); > -+ if (shl == 0) { > -+ truncated = r1 != 0; > -+ return r0; > -+ } else { > -+ int shr = 64 - shl; > -+ truncated = (r1 << shl) != 0; > -+ return (r0 << shl) | (r1 >> shr); > -+ } > -+} > -+ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t > -+uint32_hi64(uint32_t r0, bool &truncated) noexcept { > -+ return uint64_hi64(r0, truncated); > -+} > -+ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t > -+uint32_hi64(uint32_t r0, uint32_t r1, bool &truncated) noexcept { > -+ uint64_t x0 = r0; > -+ uint64_t x1 = r1; > -+ return uint64_hi64((x0 << 32) | x1, truncated); > -+} > -+ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t > -+uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool &truncated) > noexcept { > -+ uint64_t x0 = r0; > -+ uint64_t x1 = r1; > -+ uint64_t x2 = r2; > -+ return uint64_hi64(x0, (x1 << 32) | x2, truncated); > -+} > -+ > -+// add two small integers, checking for overflow. > -+// we want an efficient operation. for msvc, where > -+// we don't have built-in intrinsics, this is still > -+// pretty fast. > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb > -+scalar_add(limb x, limb y, bool &overflow) noexcept { > -+ limb z; > -+// gcc and clang > -+#if defined(__has_builtin) > -+#if __has_builtin(__builtin_add_overflow) > -+ if (!cpp20_and_in_constexpr()) { > -+ overflow = __builtin_add_overflow(x, y, &z); > -+ return z; > -+ } > -+#endif > -+#endif > -+ > -+ // generic, this still optimizes correctly on MSVC. > -+ z = x + y; > -+ overflow = z < x; > -+ return z; > -+} > -+ > -+// multiply two small integers, getting both the high and low bits. > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb > -+scalar_mul(limb x, limb y, limb &carry) noexcept { > -+#ifdef FASTFLOAT_64BIT_LIMB > -+#if defined(__SIZEOF_INT128__) > -+ // GCC and clang both define it as an extension. > -+ __uint128_t z = __uint128_t(x) * __uint128_t(y) + __uint128_t(carry); > -+ carry = limb(z >> limb_bits); > -+ return limb(z); > -+#else > -+ // fallback, no native 128-bit integer multiplication with carry. > -+ // on msvc, this optimizes identically, somehow. > -+ value128 z = full_multiplication(x, y); > -+ bool overflow; > -+ z.low = scalar_add(z.low, carry, overflow); > -+ z.high += uint64_t(overflow); // cannot overflow > -+ carry = z.high; > -+ return z.low; > -+#endif > -+#else > -+ uint64_t z = uint64_t(x) * uint64_t(y) + uint64_t(carry); > -+ carry = limb(z >> limb_bits); > -+ return limb(z); > -+#endif > -+} > -+ > -+// add scalar value to bigint starting from offset. > -+// used in grade school multiplication > -+template <uint16_t size> > -+inline FASTFLOAT_CONSTEXPR20 bool small_add_from(stackvec<size> &vec, > limb y, > -+ size_t start) noexcept { > -+ size_t index = start; > -+ limb carry = y; > -+ bool overflow; > -+ while (carry != 0 && index < vec.len()) { > -+ vec[index] = scalar_add(vec[index], carry, overflow); > -+ carry = limb(overflow); > -+ index += 1; > -+ } > -+ if (carry != 0) { > -+ FASTFLOAT_TRY(vec.try_push(carry)); > -+ } > -+ return true; > -+} > -+ > -+// add scalar value to bigint. > -+template <uint16_t size> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool > -+small_add(stackvec<size> &vec, limb y) noexcept { > -+ return small_add_from(vec, y, 0); > -+} > -+ > -+// multiply bigint by scalar value. > -+template <uint16_t size> > -+inline FASTFLOAT_CONSTEXPR20 bool small_mul(stackvec<size> &vec, > -+ limb y) noexcept { > -+ limb carry = 0; > -+ for (size_t index = 0; index < vec.len(); index++) { > -+ vec[index] = scalar_mul(vec[index], y, carry); > -+ } > -+ if (carry != 0) { > -+ FASTFLOAT_TRY(vec.try_push(carry)); > -+ } > -+ return true; > -+} > -+ > -+// add bigint to bigint starting from index. > -+// used in grade school multiplication > -+template <uint16_t size> > -+FASTFLOAT_CONSTEXPR20 bool large_add_from(stackvec<size> &x, limb_span y, > -+ size_t start) noexcept { > -+ // the effective x buffer is from `xstart..x.len()`, so exit early > -+ // if we can't get that current range. > -+ if (x.len() < start || y.len() > x.len() - start) { > -+ FASTFLOAT_TRY(x.try_resize(y.len() + start, 0)); > -+ } > -+ > -+ bool carry = false; > -+ for (size_t index = 0; index < y.len(); index++) { > -+ limb xi = x[index + start]; > -+ limb yi = y[index]; > -+ bool c1 = false; > -+ bool c2 = false; > -+ xi = scalar_add(xi, yi, c1); > -+ if (carry) { > -+ xi = scalar_add(xi, 1, c2); > -+ } > -+ x[index + start] = xi; > -+ carry = c1 | c2; > -+ } > -+ > -+ // handle overflow > -+ if (carry) { > -+ FASTFLOAT_TRY(small_add_from(x, 1, y.len() + start)); > -+ } > -+ return true; > -+} > -+ > -+// add bigint to bigint. > -+template <uint16_t size> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool > -+large_add_from(stackvec<size> &x, limb_span y) noexcept { > -+ return large_add_from(x, y, 0); > -+} > -+ > -+// grade-school multiplication algorithm > -+template <uint16_t size> > -+FASTFLOAT_CONSTEXPR20 bool long_mul(stackvec<size> &x, limb_span y) > noexcept { > -+ limb_span xs = limb_span(x.data, x.len()); > -+ stackvec<size> z(xs); > -+ limb_span zs = limb_span(z.data, z.len()); > -+ > -+ if (y.len() != 0) { > -+ limb y0 = y[0]; > -+ FASTFLOAT_TRY(small_mul(x, y0)); > -+ for (size_t index = 1; index < y.len(); index++) { > -+ limb yi = y[index]; > -+ stackvec<size> zi; > -+ if (yi != 0) { > -+ // re-use the same buffer throughout > -+ zi.set_len(0); > -+ FASTFLOAT_TRY(zi.try_extend(zs)); > -+ FASTFLOAT_TRY(small_mul(zi, yi)); > -+ limb_span zis = limb_span(zi.data, zi.len()); > -+ FASTFLOAT_TRY(large_add_from(x, zis, index)); > -+ } > -+ } > -+ } > -+ > -+ x.normalize(); > -+ return true; > -+} > -+ > -+// grade-school multiplication algorithm > -+template <uint16_t size> > -+FASTFLOAT_CONSTEXPR20 bool large_mul(stackvec<size> &x, limb_span y) > noexcept { > -+ if (y.len() == 1) { > -+ FASTFLOAT_TRY(small_mul(x, y[0])); > -+ } else { > -+ FASTFLOAT_TRY(long_mul(x, y)); > -+ } > -+ return true; > -+} > -+ > -+template <typename = void> struct pow5_tables { > -+ static constexpr uint32_t large_step = 135; > -+ static constexpr uint64_t small_power_of_5[] = { > -+ 1UL, > -+ 5UL, > -+ 25UL, > -+ 125UL, > -+ 625UL, > -+ 3125UL, > -+ 15625UL, > -+ 78125UL, > -+ 390625UL, > -+ 1953125UL, > -+ 9765625UL, > -+ 48828125UL, > -+ 244140625UL, > -+ 1220703125UL, > -+ 6103515625UL, > -+ 30517578125UL, > -+ 152587890625UL, > -+ 762939453125UL, > -+ 3814697265625UL, > -+ 19073486328125UL, > -+ 95367431640625UL, > -+ 476837158203125UL, > -+ 2384185791015625UL, > -+ 11920928955078125UL, > -+ 59604644775390625UL, > -+ 298023223876953125UL, > -+ 1490116119384765625UL, > -+ 7450580596923828125UL, > -+ }; > -+#ifdef FASTFLOAT_64BIT_LIMB > -+ constexpr static limb large_power_of_5[] = { > -+ 1414648277510068013UL, 9180637584431281687UL, > 4539964771860779200UL, > -+ 10482974169319127550UL, 198276706040285095UL}; > -+#else > -+ constexpr static limb large_power_of_5[] = { > -+ 4279965485U, 329373468U, 4020270615U, 2137533757U, 4287402176U, > -+ 1057042919U, 1071430142U, 2440757623U, 381945767U, 46164893U}; > -+#endif > -+}; > -+ > -+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE > -+ > -+template <typename T> constexpr uint32_t pow5_tables<T>::large_step; > -+ > -+template <typename T> constexpr uint64_t > pow5_tables<T>::small_power_of_5[]; > -+ > -+template <typename T> constexpr limb pow5_tables<T>::large_power_of_5[]; > -+ > -+#endif > -+ > -+// big integer type. implements a small subset of big integer > -+// arithmetic, using simple algorithms since asymptotically > -+// faster algorithms are slower for a small number of limbs. > -+// all operations assume the big-integer is normalized. > -+struct bigint : pow5_tables<> { > -+ // storage of the limbs, in little-endian order. > -+ stackvec<bigint_limbs> vec; > -+ > -+ FASTFLOAT_CONSTEXPR20 bigint() : vec() {} > -+ bigint(const bigint &) = delete; > -+ bigint &operator=(const bigint &) = delete; > -+ bigint(bigint &&) = delete; > -+ bigint &operator=(bigint &&other) = delete; > -+ > -+ FASTFLOAT_CONSTEXPR20 bigint(uint64_t value) : vec() { > -+#ifdef FASTFLOAT_64BIT_LIMB > -+ vec.push_unchecked(value); > -+#else > -+ vec.push_unchecked(uint32_t(value)); > -+ vec.push_unchecked(uint32_t(value >> 32)); > -+#endif > -+ vec.normalize(); > -+ } > -+ > -+ // get the high 64 bits from the vector, and if bits were truncated. > -+ // this is to get the significant digits for the float. > -+ FASTFLOAT_CONSTEXPR20 uint64_t hi64(bool &truncated) const noexcept { > -+#ifdef FASTFLOAT_64BIT_LIMB > -+ if (vec.len() == 0) { > -+ return empty_hi64(truncated); > -+ } else if (vec.len() == 1) { > -+ return uint64_hi64(vec.rindex(0), truncated); > -+ } else { > -+ uint64_t result = uint64_hi64(vec.rindex(0), vec.rindex(1), > truncated); > -+ truncated |= vec.nonzero(2); > -+ return result; > -+ } > -+#else > -+ if (vec.len() == 0) { > -+ return empty_hi64(truncated); > -+ } else if (vec.len() == 1) { > -+ return uint32_hi64(vec.rindex(0), truncated); > -+ } else if (vec.len() == 2) { > -+ return uint32_hi64(vec.rindex(0), vec.rindex(1), truncated); > -+ } else { > -+ uint64_t result = > -+ uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), > truncated); > -+ truncated |= vec.nonzero(3); > -+ return result; > -+ } > -+#endif > -+ } > -+ > -+ // compare two big integers, returning the large value. > -+ // assumes both are normalized. if the return value is > -+ // negative, other is larger, if the return value is > -+ // positive, this is larger, otherwise they are equal. > -+ // the limbs are stored in little-endian order, so we > -+ // must compare the limbs in ever order. > -+ FASTFLOAT_CONSTEXPR20 int compare(const bigint &other) const noexcept { > -+ if (vec.len() > other.vec.len()) { > -+ return 1; > -+ } else if (vec.len() < other.vec.len()) { > -+ return -1; > -+ } else { > -+ for (size_t index = vec.len(); index > 0; index--) { > -+ limb xi = vec[index - 1]; > -+ limb yi = other.vec[index - 1]; > -+ if (xi > yi) { > -+ return 1; > -+ } else if (xi < yi) { > -+ return -1; > -+ } > -+ } > -+ return 0; > -+ } > -+ } > -+ > -+ // shift left each limb n bits, carrying over to the new limb > -+ // returns true if we were able to shift all the digits. > -+ FASTFLOAT_CONSTEXPR20 bool shl_bits(size_t n) noexcept { > -+ // Internally, for each item, we shift left by n, and add the > previous > -+ // right shifted limb-bits. > -+ // For example, we transform (for u8) shifted left 2, to: > -+ // b10100100 b01000010 > -+ // b10 b10010001 b00001000 > -+ FASTFLOAT_DEBUG_ASSERT(n != 0); > -+ FASTFLOAT_DEBUG_ASSERT(n < sizeof(limb) * 8); > -+ > -+ size_t shl = n; > -+ size_t shr = limb_bits - shl; > -+ limb prev = 0; > -+ for (size_t index = 0; index < vec.len(); index++) { > -+ limb xi = vec[index]; > -+ vec[index] = (xi << shl) | (prev >> shr); > -+ prev = xi; > -+ } > -+ > -+ limb carry = prev >> shr; > -+ if (carry != 0) { > -+ return vec.try_push(carry); > -+ } > -+ return true; > -+ } > -+ > -+ // move the limbs left by `n` limbs. > -+ FASTFLOAT_CONSTEXPR20 bool shl_limbs(size_t n) noexcept { > -+ FASTFLOAT_DEBUG_ASSERT(n != 0); > -+ if (n + vec.len() > vec.capacity()) { > -+ return false; > -+ } else if (!vec.is_empty()) { > -+ // move limbs > -+ limb *dst = vec.data + n; > -+ const limb *src = vec.data; > -+ std::copy_backward(src, src + vec.len(), dst + vec.len()); > -+ // fill in empty limbs > -+ limb *first = vec.data; > -+ limb *last = first + n; > -+ ::std::fill(first, last, 0); > -+ vec.set_len(n + vec.len()); > -+ return true; > -+ } else { > -+ return true; > -+ } > -+ } > -+ > -+ // move the limbs left by `n` bits. > -+ FASTFLOAT_CONSTEXPR20 bool shl(size_t n) noexcept { > -+ size_t rem = n % limb_bits; > -+ size_t div = n / limb_bits; > -+ if (rem != 0) { > -+ FASTFLOAT_TRY(shl_bits(rem)); > -+ } > -+ if (div != 0) { > -+ FASTFLOAT_TRY(shl_limbs(div)); > -+ } > -+ return true; > -+ } > -+ > -+ // get the number of leading zeros in the bigint. > -+ FASTFLOAT_CONSTEXPR20 int ctlz() const noexcept { > -+ if (vec.is_empty()) { > -+ return 0; > -+ } else { > -+#ifdef FASTFLOAT_64BIT_LIMB > -+ return leading_zeroes(vec.rindex(0)); > -+#else > -+ // no use defining a specialized leading_zeroes for a 32-bit type. > -+ uint64_t r0 = vec.rindex(0); > -+ return leading_zeroes(r0 << 32); > -+#endif > -+ } > -+ } > -+ > -+ // get the number of bits in the bigint. > -+ FASTFLOAT_CONSTEXPR20 int bit_length() const noexcept { > -+ int lz = ctlz(); > -+ return int(limb_bits * vec.len()) - lz; > -+ } > -+ > -+ FASTFLOAT_CONSTEXPR20 bool mul(limb y) noexcept { return > small_mul(vec, y); } > -+ > -+ FASTFLOAT_CONSTEXPR20 bool add(limb y) noexcept { return > small_add(vec, y); } > -+ > -+ // multiply as if by 2 raised to a power. > -+ FASTFLOAT_CONSTEXPR20 bool pow2(uint32_t exp) noexcept { return > shl(exp); } > -+ > -+ // multiply as if by 5 raised to a power. > -+ FASTFLOAT_CONSTEXPR20 bool pow5(uint32_t exp) noexcept { > -+ // multiply by a power of 5 > -+ size_t large_length = sizeof(large_power_of_5) / sizeof(limb); > -+ limb_span large = limb_span(large_power_of_5, large_length); > -+ while (exp >= large_step) { > -+ FASTFLOAT_TRY(large_mul(vec, large)); > -+ exp -= large_step; > -+ } > -+#ifdef FASTFLOAT_64BIT_LIMB > -+ uint32_t small_step = 27; > -+ limb max_native = 7450580596923828125UL; > -+#else > -+ uint32_t small_step = 13; > -+ limb max_native = 1220703125U; > -+#endif > -+ while (exp >= small_step) { > -+ FASTFLOAT_TRY(small_mul(vec, max_native)); > -+ exp -= small_step; > -+ } > -+ if (exp != 0) { > -+ // Work around clang bug https://godbolt.org/z/zedh7rrhc > -+ // This is similar to > https://github.com/llvm/llvm-project/issues/47746, > -+ // except the workaround described there don't work here > -+ FASTFLOAT_TRY(small_mul( > -+ vec, limb(((void)small_power_of_5[0], > small_power_of_5[exp])))); > -+ } > -+ > -+ return true; > -+ } > -+ > -+ // multiply as if by 10 raised to a power. > -+ FASTFLOAT_CONSTEXPR20 bool pow10(uint32_t exp) noexcept { > -+ FASTFLOAT_TRY(pow5(exp)); > -+ return pow2(exp); > -+ } > -+}; > -+ > -+} // namespace fast_float > -+ > -+#endif > -+ > -+#ifndef FASTFLOAT_DIGIT_COMPARISON_H > -+#define FASTFLOAT_DIGIT_COMPARISON_H > -+ > -+#include <algorithm> > -+#include <cstdint> > -+#include <cstring> > -+#include <iterator> > -+ > -+ > -+namespace fast_float { > -+ > -+// 1e0 to 1e19 > -+constexpr static uint64_t powers_of_ten_uint64[] = {1UL, > -+ 10UL, > -+ 100UL, > -+ 1000UL, > -+ 10000UL, > -+ 100000UL, > -+ 1000000UL, > -+ 10000000UL, > -+ 100000000UL, > -+ 1000000000UL, > -+ 10000000000UL, > -+ 100000000000UL, > -+ 1000000000000UL, > -+ 10000000000000UL, > -+ 100000000000000UL, > -+ 1000000000000000UL, > -+ 10000000000000000UL, > -+ 100000000000000000UL, > -+ > 1000000000000000000UL, > -+ > 10000000000000000000UL}; > -+ > -+// calculate the exponent, in scientific notation, of the number. > -+// this algorithm is not even close to optimized, but it has no practical > -+// effect on performance: in order to have a faster algorithm, we'd need > -+// to slow down performance for faster algorithms, and this is still > fast. > -+template <typename UC> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int32_t > -+scientific_exponent(parsed_number_string_t<UC> &num) noexcept { > -+ uint64_t mantissa = num.mantissa; > -+ int32_t exponent = int32_t(num.exponent); > -+ while (mantissa >= 10000) { > -+ mantissa /= 10000; > -+ exponent += 4; > -+ } > -+ while (mantissa >= 100) { > -+ mantissa /= 100; > -+ exponent += 2; > -+ } > -+ while (mantissa >= 10) { > -+ mantissa /= 10; > -+ exponent += 1; > -+ } > -+ return exponent; > -+} > -+ > -+// this converts a native floating-point number to an extended-precision > float. > -+template <typename T> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa > -+to_extended(T value) noexcept { > -+ using equiv_uint = typename binary_format<T>::equiv_uint; > -+ constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask(); > -+ constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask(); > -+ constexpr equiv_uint hidden_bit_mask = > binary_format<T>::hidden_bit_mask(); > -+ > -+ adjusted_mantissa am; > -+ int32_t bias = binary_format<T>::mantissa_explicit_bits() - > -+ binary_format<T>::minimum_exponent(); > -+ equiv_uint bits; > -+#if FASTFLOAT_HAS_BIT_CAST > -+ bits = std::bit_cast<equiv_uint>(value); > -+#else > -+ ::memcpy(&bits, &value, sizeof(T)); > -+#endif > -+ if ((bits & exponent_mask) == 0) { > -+ // denormal > -+ am.power2 = 1 - bias; > -+ am.mantissa = bits & mantissa_mask; > -+ } else { > -+ // normal > -+ am.power2 = int32_t((bits & exponent_mask) >> > -+ binary_format<T>::mantissa_explicit_bits()); > -+ am.power2 -= bias; > -+ am.mantissa = (bits & mantissa_mask) | hidden_bit_mask; > -+ } > -+ > -+ return am; > -+} > -+ > -+// get the extended precision value of the halfway point between b and > b+u. > -+// we are given a native float that represents b, so we need to adjust it > -+// halfway between b and b+u. > -+template <typename T> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa > -+to_extended_halfway(T value) noexcept { > -+ adjusted_mantissa am = to_extended(value); > -+ am.mantissa <<= 1; > -+ am.mantissa += 1; > -+ am.power2 -= 1; > -+ return am; > -+} > -+ > -+// round an extended-precision float to the nearest machine float. > -+template <typename T, typename callback> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void > round(adjusted_mantissa &am, > -+ callback cb) > noexcept { > -+ int32_t mantissa_shift = 64 - > binary_format<T>::mantissa_explicit_bits() - 1; > -+ if (-am.power2 >= mantissa_shift) { > -+ // have a denormal float > -+ int32_t shift = -am.power2 + 1; > -+ cb(am, std::min<int32_t>(shift, 64)); > -+ // check for round-up: if rounding-nearest carried us to the hidden > bit. > -+ am.power2 = (am.mantissa < > -+ (uint64_t(1) << > binary_format<T>::mantissa_explicit_bits())) > -+ ? 0 > -+ : 1; > -+ return; > -+ } > -+ > -+ // have a normal float, use the default shift. > -+ cb(am, mantissa_shift); > -+ > -+ // check for carry > -+ if (am.mantissa >= > -+ (uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) { > -+ am.mantissa = (uint64_t(1) << > binary_format<T>::mantissa_explicit_bits()); > -+ am.power2++; > -+ } > -+ > -+ // check for infinite: we could have carried to an infinite power > -+ am.mantissa &= ~(uint64_t(1) << > binary_format<T>::mantissa_explicit_bits()); > -+ if (am.power2 >= binary_format<T>::infinite_power()) { > -+ am.power2 = binary_format<T>::infinite_power(); > -+ am.mantissa = 0; > -+ } > -+} > -+ > -+template <typename callback> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void > -+round_nearest_tie_even(adjusted_mantissa &am, int32_t shift, > -+ callback cb) noexcept { > -+ const uint64_t mask = (shift == 64) ? UINT64_MAX : (uint64_t(1) << > shift) - 1; > -+ const uint64_t halfway = (shift == 0) ? 0 : uint64_t(1) << (shift - 1); > -+ uint64_t truncated_bits = am.mantissa & mask; > -+ bool is_above = truncated_bits > halfway; > -+ bool is_halfway = truncated_bits == halfway; > -+ > -+ // shift digits into position > -+ if (shift == 64) { > -+ am.mantissa = 0; > -+ } else { > -+ am.mantissa >>= shift; > -+ } > -+ am.power2 += shift; > -+ > -+ bool is_odd = (am.mantissa & 1) == 1; > -+ am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above)); > -+} > -+ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void > -+round_down(adjusted_mantissa &am, int32_t shift) noexcept { > -+ if (shift == 64) { > -+ am.mantissa = 0; > -+ } else { > -+ am.mantissa >>= shift; > -+ } > -+ am.power2 += shift; > -+} > -+template <typename UC> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void > -+skip_zeros(UC const *&first, UC const *last) noexcept { > -+ uint64_t val; > -+ while (!cpp20_and_in_constexpr() && > -+ std::distance(first, last) >= int_cmp_len<UC>()) { > -+ ::memcpy(&val, first, sizeof(uint64_t)); > -+ if (val != int_cmp_zeros<UC>()) { > -+ break; > -+ } > -+ first += int_cmp_len<UC>(); > -+ } > -+ while (first != last) { > -+ if (*first != UC('0')) { > -+ break; > -+ } > -+ first++; > -+ } > -+} > -+ > -+// determine if any non-zero digits were truncated. > -+// all characters must be valid digits. > -+template <typename UC> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool > -+is_truncated(UC const *first, UC const *last) noexcept { > -+ // do 8-bit optimizations, can just compare to 8 literal 0s. > -+ uint64_t val; > -+ while (!cpp20_and_in_constexpr() && > -+ std::distance(first, last) >= int_cmp_len<UC>()) { > -+ ::memcpy(&val, first, sizeof(uint64_t)); > -+ if (val != int_cmp_zeros<UC>()) { > -+ return true; > -+ } > -+ first += int_cmp_len<UC>(); > -+ } > -+ while (first != last) { > -+ if (*first != UC('0')) { > -+ return true; > -+ } > -+ ++first; > -+ } > -+ return false; > -+} > -+template <typename UC> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool > -+is_truncated(span<const UC> s) noexcept { > -+ return is_truncated(s.ptr, s.ptr + s.len()); > -+} > -+ > -+template <typename UC> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void > -+parse_eight_digits(const UC *&p, limb &value, size_t &counter, > -+ size_t &count) noexcept { > -+ value = value * 100000000 + parse_eight_digits_unrolled(p); > -+ p += 8; > -+ counter += 8; > -+ count += 8; > -+} > -+ > -+template <typename UC> > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void > -+parse_one_digit(UC const *&p, limb &value, size_t &counter, > -+ size_t &count) noexcept { > -+ value = value * 10 + limb(*p - UC('0')); > -+ p++; > -+ counter++; > -+ count++; > -+} > -+ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void > -+add_native(bigint &big, limb power, limb value) noexcept { > -+ big.mul(power); > -+ big.add(value); > -+} > -+ > -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void > -+round_up_bigint(bigint &big, size_t &count) noexcept { > -+ // need to round-up the digits, but need to avoid rounding > -+ // ....9999 to ...10000, which could cause a false halfway point. > -+ add_native(big, 10, 1); > -+ count++; > -+} > -+ > -+// parse the significant digits into a big integer > -+template <typename UC> > -+inline FASTFLOAT_CONSTEXPR20 void > -+parse_mantissa(bigint &result, parsed_number_string_t<UC> &num, > -+ size_t max_digits, size_t &digits) noexcept { > -+ // try to minimize the number of big integer and scalar multiplication. > -+ // therefore, try to parse 8 digits at a time, and multiply by the > largest > -+ // scalar value (9 or 19 digits) for each step. > -+ size_t counter = 0; > -+ digits = 0; > -+ limb value = 0; > -+#ifdef FASTFLOAT_64BIT_LIMB > -+ size_t step = 19; > -+#else > -+ size_t step = 9; > -+#endif > -+ > -+ // process all integer digits. > -+ UC const *p = num.integer.ptr; > -+ UC const *pend = p + num.integer.len(); > -+ skip_zeros(p, pend); > -+ // process all digits, in increments of step per loop > -+ while (p != pend) { > -+ while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && > -+ (max_digits - digits >= 8)) { > -+ parse_eight_digits(p, value, counter, digits); > -+ } > -+ while (counter < step && p != pend && digits < max_digits) { > -+ parse_one_digit(p, value, counter, digits); > -+ } > -+ if (digits == max_digits) { > -+ // add the temporary value, then check if we've truncated any > digits > -+ add_native(result, limb(powers_of_ten_uint64[counter]), value); > -+ bool truncated = is_truncated(p, pend); > -+ if (num.fraction.ptr != nullptr) { > -+ truncated |= is_truncated(num.fraction); > -+ } > -+ if (truncated) { > -+ round_up_bigint(result, digits); > -+ } > -+ return; > -+ } else { > -+ add_native(result, limb(powers_of_ten_uint64[counter]), value); > -+ counter = 0; > -+ value = 0; > -+ } > -+ } > -+ > -+ // add our fraction digits, if they're available. > -+ if (num.fraction.ptr != nullptr) { > -+ p = num.fraction.ptr; > -+ pend = p + num.fraction.len(); > -+ if (digits == 0) { > -+ skip_zeros(p, pend); > -+ } > -+ // process all digits, in increments of step per loop > -+ while (p != pend) { > -+ while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && > -+ (max_digits - digits >= 8)) { > -+ parse_eight_digits(p, value, counter, digits); > -+ } > -+ while (counter < step && p != pend && digits < max_digits) { > -+ parse_one_digit(p, value, counter, digits); > -+ } > -+ if (digits == max_digits) { > -+ // add the temporary value, then check if we've truncated any > digits > -+ add_native(result, limb(powers_of_ten_uint64[counter]), value); > -+ bool truncated = is_truncated(p, pend); > -+ if (truncated) { > -+ round_up_bigint(result, digits); > -+ } > -+ return; > -+ } else { > -+ add_native(result, limb(powers_of_ten_uint64[counter]), value); > -+ counter = 0; > -+ value = 0; > -+ } > -+ } > -+ } > -+ > -+ if (counter != 0) { > -+ add_native(result, limb(powers_of_ten_uint64[counter]), value); > -+ } > -+} > -+ > -+template <typename T> > -+inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa > -+positive_digit_comp(bigint &bigmant, int32_t exponent) noexcept { > -+ FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent))); > -+ adjusted_mantissa answer; > -+ bool truncated; > -+ answer.mantissa = bigmant.hi64(truncated); > -+ int bias = binary_format<T>::mantissa_explicit_bits() - > -+ binary_format<T>::minimum_exponent(); > -+ answer.power2 = bigmant.bit_length() - 64 + bias; > -+ > -+ round<T>(answer, [truncated](adjusted_mantissa &a, int32_t shift) { > -+ round_nearest_tie_even( > -+ a, shift, > -+ [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool > { > -+ return is_above || (is_halfway && truncated) || > -+ (is_odd && is_halfway); > -+ }); > -+ }); > -+ > -+ return answer; > -+} > -+ > -+// the scaling here is quite simple: we have, for the real digits `m * > 10^e`, > -+// and for the theoretical digits `n * 2^f`. Since `e` is always > negative, > -+// to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m > * 2^e`. > -+// we then need to scale by `2^(f- e)`, and then the two significant > digits > -+// are of the same magnitude. > -+template <typename T> > -+inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa negative_digit_comp( > -+ bigint &bigmant, adjusted_mantissa am, int32_t exponent) noexcept { > -+ bigint &real_digits = bigmant; > -+ int32_t real_exp = exponent; > -+ > -+ // get the value of `b`, rounded down, and get a bigint representation > of b+h > -+ adjusted_mantissa am_b = am; > -+ // gcc7 buf: use a lambda to remove the noexcept qualifier bug with > -+ // -Wnoexcept-type. > -+ round<T>(am_b, > -+ [](adjusted_mantissa &a, int32_t shift) { round_down(a, > shift); }); > -+ T b; > -+ to_float(false, am_b, b); > -+ adjusted_mantissa theor = to_extended_halfway(b); > -+ bigint theor_digits(theor.mantissa); > -+ int32_t theor_exp = theor.power2; > -+ > -+ // scale real digits and theor digits to be same power. > -+ int32_t pow2_exp = theor_exp - real_exp; > -+ uint32_t pow5_exp = uint32_t(-real_exp); > -+ if (pow5_exp != 0) { > -+ FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp)); > -+ } > -+ if (pow2_exp > 0) { > -+ FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp))); > -+ } else if (pow2_exp < 0) { > -+ FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp))); > -+ } > -+ > -+ // compare digits, and use it to director rounding > -+ int ord = real_digits.compare(theor_digits); > -+ adjusted_mantissa answer = am; > -+ round<T>(answer, [ord](adjusted_mantissa &a, int32_t shift) { > -+ round_nearest_tie_even( > -+ a, shift, [ord](bool is_odd, bool _, bool __) -> bool { > -+ (void)_; // not needed, since we've done our comparison > -+ (void)__; // not needed, since we've done our comparison > -+ if (ord > 0) { > -+ return true; > -+ } else if (ord < 0) { > -+ return false; > -+ } else { > -+ return is_odd; > -+ } > -+ }); > -+ }); > -+ > -+ return answer; > -+} > -+ > -+// parse the significant digits as a big integer to unambiguously round > the > -+// the significant digits. here, we are trying to determine how to round > -+// an extended float representation close to `b+h`, halfway between `b` > -+// (the float rounded-down) and `b+u`, the next positive float. this > -+// algorithm is always correct, and uses one of two approaches. when > -+// the exponent is positive relative to the significant digits (such as > -+// 1234), we create a big-integer representation, get the high 64-bits, > -+// determine if any lower bits are truncated, and use that to direct > -+// rounding. in case of a negative exponent relative to the significant > -+// digits (such as 1.2345), we create a theoretical representation of > -+// `b` as a big-integer type, scaled to the same binary exponent as > -+// the actual digits. we then compare the big integer representations > -+// of both, and use that to direct rounding. > -+template <typename T, typename UC> > -+inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa > -+digit_comp(parsed_number_string_t<UC> &num, adjusted_mantissa am) > noexcept { > -+ // remove the invalid exponent bias > -+ am.power2 -= invalid_am_bias; > -+ > -+ int32_t sci_exp = scientific_exponent(num); > -+ size_t max_digits = binary_format<T>::max_digits(); > -+ size_t digits = 0; > -+ bigint bigmant; > -+ parse_mantissa(bigmant, num, max_digits, digits); > -+ // can't underflow, since digits is at most max_digits. > -+ int32_t exponent = sci_exp + 1 - int32_t(digits); > -+ if (exponent >= 0) { > -+ return positive_digit_comp<T>(bigmant, exponent); > -+ } else { > -+ return negative_digit_comp<T>(bigmant, am, exponent); > -+ } > -+} > -+ > -+} // namespace fast_float > -+ > -+#endif > -+ > -+#ifndef FASTFLOAT_PARSE_NUMBER_H > -+#define FASTFLOAT_PARSE_NUMBER_H > -+ > -+ > -+#include <cmath> > -+#include <cstring> > -+#include <limits> > -+#include <system_error> > -+namespace fast_float { > -+ > -+namespace detail { > -+/** > -+ * Special case +inf, -inf, nan, infinity, -infinity. > -+ * The case comparisons could be made much faster given that we know > that the > -+ * strings a null-free and fixed. > -+ **/ > -+template <typename T, typename UC> > -+from_chars_result_t<UC> FASTFLOAT_CONSTEXPR14 parse_infnan(UC const > *first, > -+ UC const > *last, > -+ T &value) > noexcept { > -+ from_chars_result_t<UC> answer{}; > -+ answer.ptr = first; > -+ answer.ec = std::errc(); // be optimistic > -+ bool minusSign = false; > -+ if (*first == > -+ UC('-')) { // assume first < last, so dereference without checks; > -+ // C++17 20.19.3.(7.1) explicitly forbids '+' here > -+ minusSign = true; > -+ ++first; > -+ } > -+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default > -+ if (*first == UC('+')) { > -+ ++first; > -+ } > -+#endif > -+ if (last - first >= 3) { > -+ if (fastfloat_strncasecmp(first, str_const_nan<UC>(), 3)) { > -+ answer.ptr = (first += 3); > -+ value = minusSign ? -std::numeric_limits<T>::quiet_NaN() > -+ : std::numeric_limits<T>::quiet_NaN(); > -+ // Check for possible nan(n-char-seq-opt), C++17 20.19.3.7, > -+ // C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan). > -+ if (first != last && *first == UC('(')) { > -+ for (UC const *ptr = first + 1; ptr != last; ++ptr) { > -+ if (*ptr == UC(')')) { > -+ answer.ptr = ptr + 1; // valid nan(n-char-seq-opt) > -+ break; > -+ } else if (!((UC('a') <= *ptr && *ptr <= UC('z')) || > -+ (UC('A') <= *ptr && *ptr <= UC('Z')) || > -+ (UC('0') <= *ptr && *ptr <= UC('9')) || *ptr == > UC('_'))) > -+ break; // forbidden char, not nan(n-char-seq-opt) > -+ } > -+ } > -+ return answer; > -+ } > -+ if (fastfloat_strncasecmp(first, str_const_inf<UC>(), 3)) { > -+ if ((last - first >= 8) && > -+ fastfloat_strncasecmp(first + 3, str_const_inf<UC>() + 3, 5)) { > -+ answer.ptr = first + 8; > -+ } else { > -+ answer.ptr = first + 3; > -+ } > -+ value = minusSign ? -std::numeric_limits<T>::infinity() > -+ : std::numeric_limits<T>::infinity(); > -+ return answer; > -+ } > -+ } > -+ answer.ec = std::errc::invalid_argument; > -+ return answer; > -+} > -+ > -+/** > -+ * Returns true if the floating-pointing rounding mode is to 'nearest'. > -+ * It is the default on most system. This function is meant to be > inexpensive. > -+ * Credit : @mwalcott3 > -+ */ > -+fastfloat_really_inline bool rounds_to_nearest() noexcept { > -+ // https://lemire.me/blog/2020/06/26/gcc-not-nearest/ > -+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) > -+ return false; > -+#endif > -+ // See > -+ // A fast function to check your floating-point rounding mode > -+ // > https://lemire.me/blog/2022/11/16/a-fast-function-to-check-your-floating-point-rounding-mode/ > -+ // > -+ // This function is meant to be equivalent to : > -+ // prior: #include <cfenv> > -+ // return fegetround() == FE_TONEAREST; > -+ // However, it is expected to be much faster than the fegetround() > -+ // function call. > -+ // > -+ // The volatile keywoard prevents the compiler from computing the > function > -+ // at compile-time. > -+ // There might be other ways to prevent compile-time optimizations > (e.g., > -+ // asm). The value does not need to be > std::numeric_limits<float>::min(), any > -+ // small value so that 1 + x should round to 1 would do (after > accounting for > -+ // excess precision, as in 387 instructions). > -+ static volatile float fmin = std::numeric_limits<float>::min(); > -+ float fmini = fmin; // we copy it so that it gets loaded at most once. > -+// > -+// Explanation: > -+// Only when fegetround() == FE_TONEAREST do we have that > -+// fmin + 1.0f == 1.0f - fmin. > -+// > -+// FE_UPWARD: > -+// fmin + 1.0f > 1 > -+// 1.0f - fmin == 1 > -+// > -+// FE_DOWNWARD or FE_TOWARDZERO: > -+// fmin + 1.0f == 1 > -+// 1.0f - fmin < 1 > -+// > -+// Note: This may fail to be accurate if fast-math has been > -+// enabled, as rounding conventions may not apply. > -+#ifdef FASTFLOAT_VISUAL_STUDIO > -+#pragma warning(push) > -+// todo: is there a VS warning? > -+// see > -+// > https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013 > -+#elif defined(__clang__) > -+#pragma clang diagnostic push > -+#pragma clang diagnostic ignored "-Wfloat-equal" > -+#elif defined(__GNUC__) > -+#pragma GCC diagnostic push > -+#pragma GCC diagnostic ignored "-Wfloat-equal" > -+#endif > -+ return (fmini + 1.0f == 1.0f - fmini); > -+#ifdef FASTFLOAT_VISUAL_STUDIO > -+#pragma warning(pop) > -+#elif defined(__clang__) > -+#pragma clang diagnostic pop > -+#elif defined(__GNUC__) > -+#pragma GCC diagnostic pop > -+#endif > -+} > -+ > -+} // namespace detail > -+ > -+template <typename T> struct from_chars_caller { > -+ template <typename UC> > -+ FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC> > -+ call(UC const *first, UC const *last, T &value, > -+ parse_options_t<UC> options) noexcept { > -+ return from_chars_advanced(first, last, value, options); > -+ } > -+}; > -+ > -+#if __STDCPP_FLOAT32_T__ == 1 > -+template <> struct from_chars_caller<std::float32_t> { > -+ template <typename UC> > -+ FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC> > -+ call(UC const *first, UC const *last, std::float32_t &value, > -+ parse_options_t<UC> options) noexcept { > -+ // if std::float32_t is defined, and we are in C++23 mode; macro set > for > -+ // float32; set value to float due to equivalence between float and > -+ // float32_t > -+ float val; > -+ auto ret = from_chars_advanced(first, last, val, options); > -+ value = val; > -+ return ret; > -+ } > -+}; > -+#endif > -+ > -+#if __STDCPP_FLOAT64_T__ == 1 > -+template <> struct from_chars_caller<std::float64_t> { > -+ template <typename UC> > -+ FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC> > -+ call(UC const *first, UC const *last, std::float64_t &value, > -+ parse_options_t<UC> options) noexcept { > -+ // if std::float64_t is defined, and we are in C++23 mode; macro set > for > -+ // float64; set value as double due to equivalence between double and > -+ // float64_t > -+ double val; > -+ auto ret = from_chars_advanced(first, last, val, options); > -+ value = val; > -+ return ret; > -+ } > -+}; > -+#endif > -+ > -+template <typename T, typename UC, typename> > -+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> > -+from_chars(UC const *first, UC const *last, T &value, > -+ chars_format fmt /*= chars_format::general*/) noexcept { > -+ return from_chars_caller<T>::call(first, last, value, > -+ parse_options_t<UC>(fmt)); > -+} > -+ > -+/** > -+ * This function overload takes parsed_number_string_t structure that is > created > -+ * and populated either by from_chars_advanced function taking chars > range and > -+ * parsing options or other parsing custom function implemented by user. > -+ */ > -+template <typename T, typename UC> > -+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> > -+from_chars_advanced(parsed_number_string_t<UC> &pns, T &value) noexcept { > -+ > -+ static_assert(is_supported_float_type<T>(), > -+ "only some floating-point types are supported"); > -+ static_assert(is_supported_char_type<UC>(), > -+ "only char, wchar_t, char16_t and char32_t are > supported"); > -+ > -+ from_chars_result_t<UC> answer; > -+ > -+ answer.ec = std::errc(); // be optimistic > -+ answer.ptr = pns.lastmatch; > -+ // The implementation of the Clinger's fast path is convoluted because > -+ // we want round-to-nearest in all cases, irrespective of the rounding > mode > -+ // selected on the thread. > -+ // We proceed optimistically, assuming that detail::rounds_to_nearest() > -+ // returns true. > -+ if (binary_format<T>::min_exponent_fast_path() <= pns.exponent && > -+ pns.exponent <= binary_format<T>::max_exponent_fast_path() && > -+ !pns.too_many_digits) { > -+ // Unfortunately, the conventional Clinger's fast path is only > possible > -+ // when the system rounds to the nearest float. > -+ // > -+ // We expect the next branch to almost always be selected. > -+ // We could check it first (before the previous branch), but > -+ // there might be performance advantages at having the check > -+ // be last. > -+ if (!cpp20_and_in_constexpr() && detail::rounds_to_nearest()) { > -+ // We have that fegetround() == FE_TONEAREST. > -+ // Next is Clinger's fast path. > -+ if (pns.mantissa <= binary_format<T>::max_mantissa_fast_path()) { > -+ value = T(pns.mantissa); > -+ if (pns.exponent < 0) { > -+ value = value / > binary_format<T>::exact_power_of_ten(-pns.exponent); > -+ } else { > -+ value = value * > binary_format<T>::exact_power_of_ten(pns.exponent); > -+ } > -+ if (pns.negative) { > -+ value = -value; > -+ } > -+ return answer; > -+ } > -+ } else { > -+ // We do not have that fegetround() == FE_TONEAREST. > -+ // Next is a modified Clinger's fast path, inspired by Jakub > Jelínek's > -+ // proposal > -+ if (pns.exponent >= 0 && > -+ pns.mantissa <= > -+ binary_format<T>::max_mantissa_fast_path(pns.exponent)) { > -+#if defined(__clang__) || defined(FASTFLOAT_32BIT) > -+ // Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD > -+ if (pns.mantissa == 0) { > -+ value = pns.negative ? T(-0.) : T(0.); > -+ return answer; > -+ } > -+#endif > -+ value = T(pns.mantissa) * > -+ binary_format<T>::exact_power_of_ten(pns.exponent); > -+ if (pns.negative) { > -+ value = -value; > -+ } > -+ return answer; > -+ } > -+ } > -+ } > -+ adjusted_mantissa am = > -+ compute_float<binary_format<T>>(pns.exponent, pns.mantissa); > -+ if (pns.too_many_digits && am.power2 >= 0) { > -+ if (am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa > + 1)) { > -+ am = compute_error<binary_format<T>>(pns.exponent, pns.mantissa); > -+ } > -+ } > -+ // If we called compute_float<binary_format<T>>(pns.exponent, > pns.mantissa) > -+ // and we have an invalid power (am.power2 < 0), then we need to go > the long > -+ // way around again. This is very uncommon. > -+ if (am.power2 < 0) { > -+ am = digit_comp<T>(pns, am); > -+ } > -+ to_float(pns.negative, am, value); > -+ // Test for over/underflow. > -+ if ((pns.mantissa != 0 && am.mantissa == 0 && am.power2 == 0) || > -+ am.power2 == binary_format<T>::infinite_power()) { > -+ answer.ec = std::errc::result_out_of_range; > -+ } > -+ return answer; > -+} > -+ > -+template <typename T, typename UC> > -+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> > -+from_chars_advanced(UC const *first, UC const *last, T &value, > -+ parse_options_t<UC> options) noexcept { > -+ > -+ static_assert(is_supported_float_type<T>(), > -+ "only some floating-point types are supported"); > -+ static_assert(is_supported_char_type<UC>(), > -+ "only char, wchar_t, char16_t and char32_t are > supported"); > -+ > -+ from_chars_result_t<UC> answer; > -+#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default > -+ while ((first != last) && fast_float::is_space(uint8_t(*first))) { > -+ first++; > -+ } > -+#endif > -+ if (first == last) { > -+ answer.ec = std::errc::invalid_argument; > -+ answer.ptr = first; > -+ return answer; > -+ } > -+ parsed_number_string_t<UC> pns = > -+ parse_number_string<UC>(first, last, options); > -+ if (!pns.valid) { > -+ if (options.format & chars_format::no_infnan) { > -+ answer.ec = std::errc::invalid_argument; > -+ answer.ptr = first; > -+ return answer; > -+ } else { > -+ return detail::parse_infnan(first, last, value); > -+ } > -+ } > -+ > -+ // call overload that takes parsed_number_string_t directly. > -+ return from_chars_advanced(pns, value); > -+} > -+ > -+template <typename T, typename UC, typename> > -+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> > -+from_chars(UC const *first, UC const *last, T &value, int base) noexcept > { > -+ static_assert(is_supported_char_type<UC>(), > -+ "only char, wchar_t, char16_t and char32_t are > supported"); > -+ > -+ from_chars_result_t<UC> answer; > -+#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default > -+ while ((first != last) && fast_float::is_space(uint8_t(*first))) { > -+ first++; > -+ } > -+#endif > -+ if (first == last || base < 2 || base > 36) { > -+ answer.ec = std::errc::invalid_argument; > -+ answer.ptr = first; > -+ return answer; > -+ } > -+ return parse_int_string(first, last, value, base); > -+} > -+ > -+} // namespace fast_float > -+ > -+#endif > -+ > diff --git > a/meta/recipes-support/vte/vte/0005-color-parser-Use-fast_float-implementation-for-from_.patch > b/meta/recipes-support/vte/vte/0005-color-parser-Use-fast_float-implementation-for-from_.patch > deleted file mode 100644 > index b951bbac18..0000000000 > --- > a/meta/recipes-support/vte/vte/0005-color-parser-Use-fast_float-implementation-for-from_.patch > +++ /dev/null > @@ -1,102 +0,0 @@ > -From 08b90d0a5bf8ceb68dd1b4e9ded0f8a2b5287a6e Mon Sep 17 00:00:00 2001 > -From: Khem Raj <raj.khem@gmail.com> > -Date: Fri, 4 Oct 2024 21:22:52 -0700 > -Subject: [PATCH 5/5] color-parser: Use fast_float implementation for > - from_chars > - > -Removed dependency on c++ runtime to provide it. > - > -Fixes: https://gitlab.gnome.org/GNOME/vte/-/issues/2823 > - > -Upstream-Status: Submitted [ > https://gitlab.gnome.org/GNOME/vte/-/issues/2823#note_2239888] > -Signed-off-by: Khem Raj <raj.khem@gmail.com> > ---- > - src/color-parser.cc | 12 ++++++------ > - src/termprops.hh | 12 ++++++------ > - 2 files changed, 12 insertions(+), 12 deletions(-) > - > -diff --git a/src/color-parser.cc b/src/color-parser.cc > -index 02ec5d3a..42c51966 100644 > ---- a/src/color-parser.cc > -+++ b/src/color-parser.cc > -@@ -17,7 +17,7 @@ > - > - #include "color-parser.hh" > - #include "color.hh" > -- > -+#include "fast_float.hh" > - #include <algorithm> > - #include <cctype> > - #include <charconv> > -@@ -298,7 +298,7 @@ parse_csslike(std::string const& spec) noexcept > - auto value = uint64_t{}; > - auto const start = spec.c_str() + 1; > - auto const end = spec.c_str() + spec.size(); > -- auto const rv = std::from_chars(start, end, value, 16); > -+ auto const rv = fast_float::from_chars(start, end, > value, 16); > - if (rv.ec != std::errc{} || rv.ptr != end) > - return std::nullopt; > - > -@@ -424,7 +424,7 @@ parse_x11like(std::string const& spec) noexcept > - auto value = uint64_t{}; > - auto const start = spec.c_str() + 1; > - auto const end = spec.c_str() + spec.size(); > -- auto const rv = std::from_chars(start, end, value, 16); > -+ auto const rv = fast_float::from_chars(start, end, > value, 16); > - if (rv.ec != std::errc{} || rv.ptr != end) > - return std::nullopt; > - > -@@ -447,13 +447,13 @@ parse_x11like(std::string const& spec) noexcept > - // Note that the length check above makes sure that @r, > @g, @b, > - // don't exceed @bits. > - auto r = UINT64_C(0), b = UINT64_C(0), g = UINT64_C(0); > -- auto rv = std::from_chars(start, end, r, 16); > -+ auto rv = fast_float::from_chars(start, end, r, 16); > - if (rv.ec != std::errc{} || rv.ptr == end || *rv.ptr != > '/') > - return std::nullopt; > -- rv = std::from_chars(rv.ptr + 1, end, g, 16); > -+ rv = fast_float::from_chars(rv.ptr + 1, end, g, 16); > - if (rv.ec != std::errc{} || rv.ptr == end || *rv.ptr != > '/') > - return std::nullopt; > -- rv = std::from_chars(rv.ptr + 1, end, b, 16); > -+ rv = fast_float::from_chars(rv.ptr + 1, end, b, 16); > - if (rv.ec != std::errc{} || rv.ptr != end) > - return std::nullopt; > - > -diff --git a/src/termprops.hh b/src/termprops.hh > -index 0d3f0f4c..a10fc7d1 100644 > ---- a/src/termprops.hh > -+++ b/src/termprops.hh > -@@ -17,6 +17,7 @@ > - > - #include <glib.h> > - > -+#include "fast_float.hh" > - #include "fwd.hh" > - #include "uuid.hh" > - #include "color.hh" > -@@ -355,8 +356,8 @@ inline std::optional<TermpropValue> > - parse_termprop_integral(std::string_view const& str) noexcept > - { > - auto v = T{}; > -- if (auto [ptr, err] = std::from_chars(std::begin(str), > -- std::end(str), > -+ if (auto [ptr, err] = fast_float::from_chars(str.data(), > -+ str.data()+str.size(), > - v); > - err == std::errc() && ptr == std::end(str)) { > - if constexpr (std::is_unsigned_v<T>) { > -@@ -389,10 +390,9 @@ inline std::optional<TermpropValue> > - parse_termprop_floating(std::string_view const& str) noexcept > - { > - auto v = T{}; > -- if (auto [ptr, err] = std::from_chars(std::begin(str), > -- std::end(str), > -- v, > -- > std::chars_format::general); > -+ if (auto [ptr, err] = fast_float::from_chars(str.data(), > -+ str.data() + str.size(), > -+ v); > - err == std::errc() && > - ptr == std::end(str) && > - std::isfinite(v)) { > diff --git a/meta/recipes-support/vte/vte_0.78.2.bb > b/meta/recipes-support/vte/vte_0.80.3.bb > similarity index 82% > rename from meta/recipes-support/vte/vte_0.78.2.bb > rename to meta/recipes-support/vte/vte_0.80.3.bb > index 0593d16cd8..1eb95dd827 100644 > --- a/meta/recipes-support/vte/vte_0.78.2.bb > +++ b/meta/recipes-support/vte/vte_0.80.3.bb > @@ -11,18 +11,15 @@ LIC_FILES_CHKSUM = " \ > file://COPYING.XTERM;md5=d7fc3a23c16c039afafe2e042030f057 \ > " > > -DEPENDS = "glib-2.0 glib-2.0-native gtk+3 libpcre2 libxml2-native > gperf-native icu lz4" > +DEPENDS = "fastfloat glib-2.0 glib-2.0-native gtk+3 libpcre2 > libxml2-native gperf-native icu lz4" > > GIR_MESON_OPTION = 'gir' > GIDOCGEN_MESON_OPTION = "docs" > inherit gnomebase gi-docgen features_check upstream-version-is-even > gobject-introspection systemd vala > > -SRC_URI += "file://0001-Add-W_EXITCODE-macro-for-non-glibc-systems.patch \ > - file://0002-lib-Typo-fix.patch \ > - > file://0004-fast_float-Add-single-header-library-for-from_char-i.patch \ > - > file://0005-color-parser-Use-fast_float-implementation-for-from_.patch \ > - " > -SRC_URI[archive.sha256sum] = > "35d7bcde07356846b4a12881c8e016705b70a9004a9082285eee5834ccc49890" > +SRC_URI += "file://0001-Add-W_EXITCODE-macro-for-non-glibc-systems.patch" > + > +SRC_URI[archive.sha256sum] = > "2e596fd3fbeabb71531662224e71f6a2c37f684426136d62854627276ef4f699" > > ANY_OF_DISTRO_FEATURES = "${GTK3DISTROFEATURES}" > > @@ -49,7 +46,8 @@ FILES:${PN}-gtk4-dev = "${libdir}/lib*gtk4.so \ > ${datadir}/vala/vapi/vte-2.91-gtk4.vapi \ > ${includedir}/vte-2.91-gtk4 \ > " > -FILES:${PN} += "${systemd_user_unitdir}" > +FILES:${PN} += "${systemd_user_unitdir} \ > + ${datadir}/xdg-terminals" > FILES:libvte = "${libdir}/*.so.* ${libdir}/girepository-1.0/*" > FILES:${PN}-prompt = " \ > ${sysconfdir}/profile.d \ > -- > 2.49.0 > > > -=-=-=-=-=-=-=-=-=-=-=- > Links: You receive all messages sent to this group. > View/Reply Online (#222738): > https://lists.openembedded.org/g/openembedded-core/message/222738 > Mute This Topic: https://lists.openembedded.org/mt/115028533/556952 > Group Owner: openembedded-core+owner@lists.openembedded.org > Unsubscribe: https://lists.openembedded.org/g/openembedded-core/unsub [ > rob.woolleywr@gmail.com] > -=-=-=-=-=-=-=-=-=-=-=- > >
diff --git a/meta/recipes-support/vte/vte/0002-lib-Typo-fix.patch b/meta/recipes-support/vte/vte/0002-lib-Typo-fix.patch deleted file mode 100644 index 410d506806..0000000000 --- a/meta/recipes-support/vte/vte/0002-lib-Typo-fix.patch +++ /dev/null @@ -1,25 +0,0 @@ -From 6b7440996819c12ec32bfaf4e73b27baeb273207 Mon Sep 17 00:00:00 2001 -From: Christian Persch <chpe@src.gnome.org> -Date: Thu, 5 Sep 2024 23:59:05 +0200 -Subject: [PATCH 2/3] lib: Typo fix - -Fixes: https://gitlab.gnome.org/GNOME/vte/-/issues/2816 -Upstream-Status: Backport [https://gitlab.gnome.org/GNOME/vte/-/commit/e24087d953d9352c8bc46074e2662c80f9bfbc2d] -Signed-off-by: Khem Raj <raj.khem@gmail.com> ---- - src/vteinternal.hh | 2 +- - 1 file changed, 1 insertion(+), 1 deletion(-) - -diff --git a/src/vteinternal.hh b/src/vteinternal.hh -index 051e78c..b1adc19 100644 ---- a/src/vteinternal.hh -+++ b/src/vteinternal.hh -@@ -1233,7 +1233,7 @@ public: - void reset_decoder(); - - void feed(std::string_view const& data, -- bool start_processsing_ = true); -+ bool start_processing_ = true); - void feed_child(char const* data, - size_t length) { assert(data); feed_child({data, length}); } - void feed_child(std::string_view const& str); diff --git a/meta/recipes-support/vte/vte/0004-fast_float-Add-single-header-library-for-from_char-i.patch b/meta/recipes-support/vte/vte/0004-fast_float-Add-single-header-library-for-from_char-i.patch deleted file mode 100644 index 731dba729d..0000000000 --- a/meta/recipes-support/vte/vte/0004-fast_float-Add-single-header-library-for-from_char-i.patch +++ /dev/null @@ -1,3922 +0,0 @@ -From 2a32e43e43b04771a3357d3d4ccbafa7714e0114 Mon Sep 17 00:00:00 2001 -From: Khem Raj <raj.khem@gmail.com> -Date: Fri, 4 Oct 2024 21:21:11 -0700 -Subject: [PATCH 4/5] fast_float: Add single header library for from_char - implementation - -Document the process to re-generate the file whenever new release -is made for fast_float upstream. - -This would make it work with llvm libc++ - -Upstream-Status: Submitted [https://gitlab.gnome.org/GNOME/vte/-/issues/2823#note_2239888] -Signed-off-by: Khem Raj <raj.khem@gmail.com> ---- - README.md | 17 + - src/fast_float.hh | 3869 +++++++++++++++++++++++++++++++++++++++++++++ - 2 files changed, 3886 insertions(+) - create mode 100644 src/fast_float.hh - -diff --git a/README.md b/README.md -index a32465a9..20ed5ba2 100644 ---- a/README.md -+++ b/README.md -@@ -21,6 +21,23 @@ on download.gnome.org, but please note that any tarball for releases - after 0.60.3 were made by either the gnome release team or other - gnome contributors, but not by a VTE maintainer. - -+fast_float library[1] is used to provide from_chars implementation for faster -+and more portable parsing of 64 decimal strings. -+ -+fast_float.hh is an amalgamation of the entire library, -+which can be regenerated by using amalgamate.py script provided by -+fast_float repository. Following command can be used to re-generate the -+header file -+ -+``` -+git clone https://github.com/fastfloat/fast_float -+cd fast_float -+git checkout v6.1.6 -+python3 ./script/amalgamate.py --license=MIT > $VTE_SRC/src/fast_float.hh -+``` -+ -+[1]: https://github.com/fastfloat/fast_float -+ - Installation - ------------ - -diff --git a/src/fast_float.hh b/src/fast_float.hh -new file mode 100644 -index 00000000..e0d5dd53 ---- /dev/null -+++ b/src/fast_float.hh -@@ -0,0 +1,3869 @@ -+// fast_float by Daniel Lemire -+// fast_float by João Paulo Magalhaes -+// -+// -+// with contributions from Eugene Golushkov -+// with contributions from Maksim Kita -+// with contributions from Marcin Wojdyr -+// with contributions from Neal Richardson -+// with contributions from Tim Paine -+// with contributions from Fabio Pellacini -+// with contributions from Lénárd Szolnoki -+// with contributions from Jan Pharago -+// with contributions from Maya Warrier -+// with contributions from Taha Khokhar -+// -+// -+// MIT License Notice -+// -+// MIT License -+// -+// Copyright (c) 2021 The fast_float authors -+// -+// Permission is hereby granted, free of charge, to any -+// person obtaining a copy of this software and associated -+// documentation files (the "Software"), to deal in the -+// Software without restriction, including without -+// limitation the rights to use, copy, modify, merge, -+// publish, distribute, sublicense, and/or sell copies of -+// the Software, and to permit persons to whom the Software -+// is furnished to do so, subject to the following -+// conditions: -+// -+// The above copyright notice and this permission notice -+// shall be included in all copies or substantial portions -+// of the Software. -+// -+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF -+// ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED -+// TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A -+// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT -+// SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY -+// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION -+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR -+// IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER -+// DEALINGS IN THE SOFTWARE. -+// -+ -+#ifndef FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H -+#define FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H -+ -+#ifdef __has_include -+#if __has_include(<version>) -+#include <version> -+#endif -+#endif -+ -+// Testing for https://wg21.link/N3652, adopted in C++14 -+#if __cpp_constexpr >= 201304 -+#define FASTFLOAT_CONSTEXPR14 constexpr -+#else -+#define FASTFLOAT_CONSTEXPR14 -+#endif -+ -+#if defined(__cpp_lib_bit_cast) && __cpp_lib_bit_cast >= 201806L -+#define FASTFLOAT_HAS_BIT_CAST 1 -+#else -+#define FASTFLOAT_HAS_BIT_CAST 0 -+#endif -+ -+#if defined(__cpp_lib_is_constant_evaluated) && \ -+ __cpp_lib_is_constant_evaluated >= 201811L -+#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 1 -+#else -+#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 0 -+#endif -+ -+// Testing for relevant C++20 constexpr library features -+#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED && FASTFLOAT_HAS_BIT_CAST && \ -+ __cpp_lib_constexpr_algorithms >= 201806L /*For std::copy and std::fill*/ -+#define FASTFLOAT_CONSTEXPR20 constexpr -+#define FASTFLOAT_IS_CONSTEXPR 1 -+#else -+#define FASTFLOAT_CONSTEXPR20 -+#define FASTFLOAT_IS_CONSTEXPR 0 -+#endif -+ -+#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L) -+#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 0 -+#else -+#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 1 -+#endif -+ -+#endif // FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H -+ -+#ifndef FASTFLOAT_FLOAT_COMMON_H -+#define FASTFLOAT_FLOAT_COMMON_H -+ -+#include <cfloat> -+#include <cstdint> -+#include <cassert> -+#include <cstring> -+#include <type_traits> -+#include <system_error> -+#ifdef __has_include -+#if __has_include(<stdfloat>) && (__cplusplus > 202002L || _MSVC_LANG > 202002L) -+#include <stdfloat> -+#endif -+#endif -+ -+namespace fast_float { -+ -+#define FASTFLOAT_JSONFMT (1 << 5) -+#define FASTFLOAT_FORTRANFMT (1 << 6) -+ -+enum chars_format { -+ scientific = 1 << 0, -+ fixed = 1 << 2, -+ hex = 1 << 3, -+ no_infnan = 1 << 4, -+ // RFC 8259: https://datatracker.ietf.org/doc/html/rfc8259#section-6 -+ json = FASTFLOAT_JSONFMT | fixed | scientific | no_infnan, -+ // Extension of RFC 8259 where, e.g., "inf" and "nan" are allowed. -+ json_or_infnan = FASTFLOAT_JSONFMT | fixed | scientific, -+ fortran = FASTFLOAT_FORTRANFMT | fixed | scientific, -+ general = fixed | scientific -+}; -+ -+template <typename UC> struct from_chars_result_t { -+ UC const *ptr; -+ std::errc ec; -+}; -+using from_chars_result = from_chars_result_t<char>; -+ -+template <typename UC> struct parse_options_t { -+ constexpr explicit parse_options_t(chars_format fmt = chars_format::general, -+ UC dot = UC('.')) -+ : format(fmt), decimal_point(dot) {} -+ -+ /** Which number formats are accepted */ -+ chars_format format; -+ /** The character used as decimal point */ -+ UC decimal_point; -+}; -+using parse_options = parse_options_t<char>; -+ -+} // namespace fast_float -+ -+#if FASTFLOAT_HAS_BIT_CAST -+#include <bit> -+#endif -+ -+#if (defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ -+ defined(__amd64) || defined(__aarch64__) || defined(_M_ARM64) || \ -+ defined(__MINGW64__) || defined(__s390x__) || \ -+ (defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || \ -+ defined(__PPC64LE__)) || \ -+ defined(__loongarch64)) -+#define FASTFLOAT_64BIT 1 -+#elif (defined(__i386) || defined(__i386__) || defined(_M_IX86) || \ -+ defined(__arm__) || defined(_M_ARM) || defined(__ppc__) || \ -+ defined(__MINGW32__) || defined(__EMSCRIPTEN__)) -+#define FASTFLOAT_32BIT 1 -+#else -+ // Need to check incrementally, since SIZE_MAX is a size_t, avoid overflow. -+// We can never tell the register width, but the SIZE_MAX is a good -+// approximation. UINTPTR_MAX and INTPTR_MAX are optional, so avoid them for max -+// portability. -+#if SIZE_MAX == 0xffff -+#error Unknown platform (16-bit, unsupported) -+#elif SIZE_MAX == 0xffffffff -+#define FASTFLOAT_32BIT 1 -+#elif SIZE_MAX == 0xffffffffffffffff -+#define FASTFLOAT_64BIT 1 -+#else -+#error Unknown platform (not 32-bit, not 64-bit?) -+#endif -+#endif -+ -+#if ((defined(_WIN32) || defined(_WIN64)) && !defined(__clang__)) || \ -+ (defined(_M_ARM64) && !defined(__MINGW32__)) -+#include <intrin.h> -+#endif -+ -+#if defined(_MSC_VER) && !defined(__clang__) -+#define FASTFLOAT_VISUAL_STUDIO 1 -+#endif -+ -+#if defined __BYTE_ORDER__ && defined __ORDER_BIG_ENDIAN__ -+#define FASTFLOAT_IS_BIG_ENDIAN (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) -+#elif defined _WIN32 -+#define FASTFLOAT_IS_BIG_ENDIAN 0 -+#else -+#if defined(__APPLE__) || defined(__FreeBSD__) -+#include <machine/endian.h> -+#elif defined(sun) || defined(__sun) -+#include <sys/byteorder.h> -+#elif defined(__MVS__) -+#include <sys/endian.h> -+#else -+#ifdef __has_include -+#if __has_include(<endian.h>) -+#include <endian.h> -+#endif //__has_include(<endian.h>) -+#endif //__has_include -+#endif -+# -+#ifndef __BYTE_ORDER__ -+// safe choice -+#define FASTFLOAT_IS_BIG_ENDIAN 0 -+#endif -+# -+#ifndef __ORDER_LITTLE_ENDIAN__ -+// safe choice -+#define FASTFLOAT_IS_BIG_ENDIAN 0 -+#endif -+# -+#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ -+#define FASTFLOAT_IS_BIG_ENDIAN 0 -+#else -+#define FASTFLOAT_IS_BIG_ENDIAN 1 -+#endif -+#endif -+ -+#if defined(__SSE2__) || (defined(FASTFLOAT_VISUAL_STUDIO) && \ -+ (defined(_M_AMD64) || defined(_M_X64) || \ -+ (defined(_M_IX86_FP) && _M_IX86_FP == 2))) -+#define FASTFLOAT_SSE2 1 -+#endif -+ -+#if defined(__aarch64__) || defined(_M_ARM64) -+#define FASTFLOAT_NEON 1 -+#endif -+ -+#if defined(FASTFLOAT_SSE2) || defined(FASTFLOAT_NEON) -+#define FASTFLOAT_HAS_SIMD 1 -+#endif -+ -+#if defined(__GNUC__) -+// disable -Wcast-align=strict (GCC only) -+#define FASTFLOAT_SIMD_DISABLE_WARNINGS \ -+ _Pragma("GCC diagnostic push") \ -+ _Pragma("GCC diagnostic ignored \"-Wcast-align\"") -+#else -+#define FASTFLOAT_SIMD_DISABLE_WARNINGS -+#endif -+ -+#if defined(__GNUC__) -+#define FASTFLOAT_SIMD_RESTORE_WARNINGS _Pragma("GCC diagnostic pop") -+#else -+#define FASTFLOAT_SIMD_RESTORE_WARNINGS -+#endif -+ -+#ifdef FASTFLOAT_VISUAL_STUDIO -+#define fastfloat_really_inline __forceinline -+#else -+#define fastfloat_really_inline inline __attribute__((always_inline)) -+#endif -+ -+#ifndef FASTFLOAT_ASSERT -+#define FASTFLOAT_ASSERT(x) \ -+ { ((void)(x)); } -+#endif -+ -+#ifndef FASTFLOAT_DEBUG_ASSERT -+#define FASTFLOAT_DEBUG_ASSERT(x) \ -+ { ((void)(x)); } -+#endif -+ -+// rust style `try!()` macro, or `?` operator -+#define FASTFLOAT_TRY(x) \ -+ { \ -+ if (!(x)) \ -+ return false; \ -+ } -+ -+#define FASTFLOAT_ENABLE_IF(...) \ -+ typename std::enable_if<(__VA_ARGS__), int>::type -+ -+namespace fast_float { -+ -+fastfloat_really_inline constexpr bool cpp20_and_in_constexpr() { -+#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED -+ return std::is_constant_evaluated(); -+#else -+ return false; -+#endif -+} -+ -+template <typename T> -+fastfloat_really_inline constexpr bool is_supported_float_type() { -+ return std::is_same<T, float>::value || std::is_same<T, double>::value -+#if __STDCPP_FLOAT32_T__ -+ || std::is_same<T, std::float32_t>::value -+#endif -+#if __STDCPP_FLOAT64_T__ -+ || std::is_same<T, std::float64_t>::value -+#endif -+ ; -+} -+ -+template <typename UC> -+fastfloat_really_inline constexpr bool is_supported_char_type() { -+ return std::is_same<UC, char>::value || std::is_same<UC, wchar_t>::value || -+ std::is_same<UC, char16_t>::value || std::is_same<UC, char32_t>::value; -+} -+ -+// Compares two ASCII strings in a case insensitive manner. -+template <typename UC> -+inline FASTFLOAT_CONSTEXPR14 bool -+fastfloat_strncasecmp(UC const *input1, UC const *input2, size_t length) { -+ char running_diff{0}; -+ for (size_t i = 0; i < length; ++i) { -+ running_diff |= (char(input1[i]) ^ char(input2[i])); -+ } -+ return (running_diff == 0) || (running_diff == 32); -+} -+ -+#ifndef FLT_EVAL_METHOD -+#error "FLT_EVAL_METHOD should be defined, please include cfloat." -+#endif -+ -+// a pointer and a length to a contiguous block of memory -+template <typename T> struct span { -+ const T *ptr; -+ size_t length; -+ constexpr span(const T *_ptr, size_t _length) : ptr(_ptr), length(_length) {} -+ constexpr span() : ptr(nullptr), length(0) {} -+ -+ constexpr size_t len() const noexcept { return length; } -+ -+ FASTFLOAT_CONSTEXPR14 const T &operator[](size_t index) const noexcept { -+ FASTFLOAT_DEBUG_ASSERT(index < length); -+ return ptr[index]; -+ } -+}; -+ -+struct value128 { -+ uint64_t low; -+ uint64_t high; -+ constexpr value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {} -+ constexpr value128() : low(0), high(0) {} -+}; -+ -+/* Helper C++14 constexpr generic implementation of leading_zeroes */ -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int -+leading_zeroes_generic(uint64_t input_num, int last_bit = 0) { -+ if (input_num & uint64_t(0xffffffff00000000)) { -+ input_num >>= 32; -+ last_bit |= 32; -+ } -+ if (input_num & uint64_t(0xffff0000)) { -+ input_num >>= 16; -+ last_bit |= 16; -+ } -+ if (input_num & uint64_t(0xff00)) { -+ input_num >>= 8; -+ last_bit |= 8; -+ } -+ if (input_num & uint64_t(0xf0)) { -+ input_num >>= 4; -+ last_bit |= 4; -+ } -+ if (input_num & uint64_t(0xc)) { -+ input_num >>= 2; -+ last_bit |= 2; -+ } -+ if (input_num & uint64_t(0x2)) { /* input_num >>= 1; */ -+ last_bit |= 1; -+ } -+ return 63 - last_bit; -+} -+ -+/* result might be undefined when input_num is zero */ -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 int -+leading_zeroes(uint64_t input_num) { -+ assert(input_num > 0); -+ if (cpp20_and_in_constexpr()) { -+ return leading_zeroes_generic(input_num); -+ } -+#ifdef FASTFLOAT_VISUAL_STUDIO -+#if defined(_M_X64) || defined(_M_ARM64) -+ unsigned long leading_zero = 0; -+ // Search the mask data from most significant bit (MSB) -+ // to least significant bit (LSB) for a set bit (1). -+ _BitScanReverse64(&leading_zero, input_num); -+ return (int)(63 - leading_zero); -+#else -+ return leading_zeroes_generic(input_num); -+#endif -+#else -+ return __builtin_clzll(input_num); -+#endif -+} -+ -+// slow emulation routine for 32-bit -+fastfloat_really_inline constexpr uint64_t emulu(uint32_t x, uint32_t y) { -+ return x * (uint64_t)y; -+} -+ -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t -+umul128_generic(uint64_t ab, uint64_t cd, uint64_t *hi) { -+ uint64_t ad = emulu((uint32_t)(ab >> 32), (uint32_t)cd); -+ uint64_t bd = emulu((uint32_t)ab, (uint32_t)cd); -+ uint64_t adbc = ad + emulu((uint32_t)ab, (uint32_t)(cd >> 32)); -+ uint64_t adbc_carry = (uint64_t)(adbc < ad); -+ uint64_t lo = bd + (adbc << 32); -+ *hi = emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) + -+ (adbc_carry << 32) + (uint64_t)(lo < bd); -+ return lo; -+} -+ -+#ifdef FASTFLOAT_32BIT -+ -+// slow emulation routine for 32-bit -+#if !defined(__MINGW64__) -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t _umul128(uint64_t ab, -+ uint64_t cd, -+ uint64_t *hi) { -+ return umul128_generic(ab, cd, hi); -+} -+#endif // !__MINGW64__ -+ -+#endif // FASTFLOAT_32BIT -+ -+// compute 64-bit a*b -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128 -+full_multiplication(uint64_t a, uint64_t b) { -+ if (cpp20_and_in_constexpr()) { -+ value128 answer; -+ answer.low = umul128_generic(a, b, &answer.high); -+ return answer; -+ } -+ value128 answer; -+#if defined(_M_ARM64) && !defined(__MINGW32__) -+ // ARM64 has native support for 64-bit multiplications, no need to emulate -+ // But MinGW on ARM64 doesn't have native support for 64-bit multiplications -+ answer.high = __umulh(a, b); -+ answer.low = a * b; -+#elif defined(FASTFLOAT_32BIT) || \ -+ (defined(_WIN64) && !defined(__clang__) && !defined(_M_ARM64)) -+ answer.low = _umul128(a, b, &answer.high); // _umul128 not available on ARM64 -+#elif defined(FASTFLOAT_64BIT) && defined(__SIZEOF_INT128__) -+ __uint128_t r = ((__uint128_t)a) * b; -+ answer.low = uint64_t(r); -+ answer.high = uint64_t(r >> 64); -+#else -+ answer.low = umul128_generic(a, b, &answer.high); -+#endif -+ return answer; -+} -+ -+struct adjusted_mantissa { -+ uint64_t mantissa{0}; -+ int32_t power2{0}; // a negative value indicates an invalid result -+ adjusted_mantissa() = default; -+ constexpr bool operator==(const adjusted_mantissa &o) const { -+ return mantissa == o.mantissa && power2 == o.power2; -+ } -+ constexpr bool operator!=(const adjusted_mantissa &o) const { -+ return mantissa != o.mantissa || power2 != o.power2; -+ } -+}; -+ -+// Bias so we can get the real exponent with an invalid adjusted_mantissa. -+constexpr static int32_t invalid_am_bias = -0x8000; -+ -+// used for binary_format_lookup_tables<T>::max_mantissa -+constexpr uint64_t constant_55555 = 5 * 5 * 5 * 5 * 5; -+ -+template <typename T, typename U = void> struct binary_format_lookup_tables; -+ -+template <typename T> struct binary_format : binary_format_lookup_tables<T> { -+ using equiv_uint = -+ typename std::conditional<sizeof(T) == 4, uint32_t, uint64_t>::type; -+ -+ static inline constexpr int mantissa_explicit_bits(); -+ static inline constexpr int minimum_exponent(); -+ static inline constexpr int infinite_power(); -+ static inline constexpr int sign_index(); -+ static inline constexpr int -+ min_exponent_fast_path(); // used when fegetround() == FE_TONEAREST -+ static inline constexpr int max_exponent_fast_path(); -+ static inline constexpr int max_exponent_round_to_even(); -+ static inline constexpr int min_exponent_round_to_even(); -+ static inline constexpr uint64_t max_mantissa_fast_path(int64_t power); -+ static inline constexpr uint64_t -+ max_mantissa_fast_path(); // used when fegetround() == FE_TONEAREST -+ static inline constexpr int largest_power_of_ten(); -+ static inline constexpr int smallest_power_of_ten(); -+ static inline constexpr T exact_power_of_ten(int64_t power); -+ static inline constexpr size_t max_digits(); -+ static inline constexpr equiv_uint exponent_mask(); -+ static inline constexpr equiv_uint mantissa_mask(); -+ static inline constexpr equiv_uint hidden_bit_mask(); -+}; -+ -+template <typename U> struct binary_format_lookup_tables<double, U> { -+ static constexpr double powers_of_ten[] = { -+ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, -+ 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; -+ -+ // Largest integer value v so that (5**index * v) <= 1<<53. -+ // 0x20000000000000 == 1 << 53 -+ static constexpr uint64_t max_mantissa[] = { -+ 0x20000000000000, -+ 0x20000000000000 / 5, -+ 0x20000000000000 / (5 * 5), -+ 0x20000000000000 / (5 * 5 * 5), -+ 0x20000000000000 / (5 * 5 * 5 * 5), -+ 0x20000000000000 / (constant_55555), -+ 0x20000000000000 / (constant_55555 * 5), -+ 0x20000000000000 / (constant_55555 * 5 * 5), -+ 0x20000000000000 / (constant_55555 * 5 * 5 * 5), -+ 0x20000000000000 / (constant_55555 * 5 * 5 * 5 * 5), -+ 0x20000000000000 / (constant_55555 * constant_55555), -+ 0x20000000000000 / (constant_55555 * constant_55555 * 5), -+ 0x20000000000000 / (constant_55555 * constant_55555 * 5 * 5), -+ 0x20000000000000 / (constant_55555 * constant_55555 * 5 * 5 * 5), -+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555), -+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5), -+ 0x20000000000000 / -+ (constant_55555 * constant_55555 * constant_55555 * 5 * 5), -+ 0x20000000000000 / -+ (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5), -+ 0x20000000000000 / -+ (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5), -+ 0x20000000000000 / -+ (constant_55555 * constant_55555 * constant_55555 * constant_55555), -+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * -+ constant_55555 * 5), -+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * -+ constant_55555 * 5 * 5), -+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * -+ constant_55555 * 5 * 5 * 5), -+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * -+ constant_55555 * 5 * 5 * 5 * 5)}; -+}; -+ -+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE -+ -+template <typename U> -+constexpr double binary_format_lookup_tables<double, U>::powers_of_ten[]; -+ -+template <typename U> -+constexpr uint64_t binary_format_lookup_tables<double, U>::max_mantissa[]; -+ -+#endif -+ -+template <typename U> struct binary_format_lookup_tables<float, U> { -+ static constexpr float powers_of_ten[] = {1e0f, 1e1f, 1e2f, 1e3f, 1e4f, 1e5f, -+ 1e6f, 1e7f, 1e8f, 1e9f, 1e10f}; -+ -+ // Largest integer value v so that (5**index * v) <= 1<<24. -+ // 0x1000000 == 1<<24 -+ static constexpr uint64_t max_mantissa[] = { -+ 0x1000000, -+ 0x1000000 / 5, -+ 0x1000000 / (5 * 5), -+ 0x1000000 / (5 * 5 * 5), -+ 0x1000000 / (5 * 5 * 5 * 5), -+ 0x1000000 / (constant_55555), -+ 0x1000000 / (constant_55555 * 5), -+ 0x1000000 / (constant_55555 * 5 * 5), -+ 0x1000000 / (constant_55555 * 5 * 5 * 5), -+ 0x1000000 / (constant_55555 * 5 * 5 * 5 * 5), -+ 0x1000000 / (constant_55555 * constant_55555), -+ 0x1000000 / (constant_55555 * constant_55555 * 5)}; -+}; -+ -+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE -+ -+template <typename U> -+constexpr float binary_format_lookup_tables<float, U>::powers_of_ten[]; -+ -+template <typename U> -+constexpr uint64_t binary_format_lookup_tables<float, U>::max_mantissa[]; -+ -+#endif -+ -+template <> -+inline constexpr int binary_format<double>::min_exponent_fast_path() { -+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) -+ return 0; -+#else -+ return -22; -+#endif -+} -+ -+template <> -+inline constexpr int binary_format<float>::min_exponent_fast_path() { -+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) -+ return 0; -+#else -+ return -10; -+#endif -+} -+ -+template <> -+inline constexpr int binary_format<double>::mantissa_explicit_bits() { -+ return 52; -+} -+template <> -+inline constexpr int binary_format<float>::mantissa_explicit_bits() { -+ return 23; -+} -+ -+template <> -+inline constexpr int binary_format<double>::max_exponent_round_to_even() { -+ return 23; -+} -+ -+template <> -+inline constexpr int binary_format<float>::max_exponent_round_to_even() { -+ return 10; -+} -+ -+template <> -+inline constexpr int binary_format<double>::min_exponent_round_to_even() { -+ return -4; -+} -+ -+template <> -+inline constexpr int binary_format<float>::min_exponent_round_to_even() { -+ return -17; -+} -+ -+template <> inline constexpr int binary_format<double>::minimum_exponent() { -+ return -1023; -+} -+template <> inline constexpr int binary_format<float>::minimum_exponent() { -+ return -127; -+} -+ -+template <> inline constexpr int binary_format<double>::infinite_power() { -+ return 0x7FF; -+} -+template <> inline constexpr int binary_format<float>::infinite_power() { -+ return 0xFF; -+} -+ -+template <> inline constexpr int binary_format<double>::sign_index() { -+ return 63; -+} -+template <> inline constexpr int binary_format<float>::sign_index() { -+ return 31; -+} -+ -+template <> -+inline constexpr int binary_format<double>::max_exponent_fast_path() { -+ return 22; -+} -+template <> -+inline constexpr int binary_format<float>::max_exponent_fast_path() { -+ return 10; -+} -+ -+template <> -+inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path() { -+ return uint64_t(2) << mantissa_explicit_bits(); -+} -+template <> -+inline constexpr uint64_t -+binary_format<double>::max_mantissa_fast_path(int64_t power) { -+ // caller is responsible to ensure that -+ // power >= 0 && power <= 22 -+ // -+ // Work around clang bug https://godbolt.org/z/zedh7rrhc -+ return (void)max_mantissa[0], max_mantissa[power]; -+} -+template <> -+inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path() { -+ return uint64_t(2) << mantissa_explicit_bits(); -+} -+template <> -+inline constexpr uint64_t -+binary_format<float>::max_mantissa_fast_path(int64_t power) { -+ // caller is responsible to ensure that -+ // power >= 0 && power <= 10 -+ // -+ // Work around clang bug https://godbolt.org/z/zedh7rrhc -+ return (void)max_mantissa[0], max_mantissa[power]; -+} -+ -+template <> -+inline constexpr double -+binary_format<double>::exact_power_of_ten(int64_t power) { -+ // Work around clang bug https://godbolt.org/z/zedh7rrhc -+ return (void)powers_of_ten[0], powers_of_ten[power]; -+} -+template <> -+inline constexpr float binary_format<float>::exact_power_of_ten(int64_t power) { -+ // Work around clang bug https://godbolt.org/z/zedh7rrhc -+ return (void)powers_of_ten[0], powers_of_ten[power]; -+} -+ -+template <> inline constexpr int binary_format<double>::largest_power_of_ten() { -+ return 308; -+} -+template <> inline constexpr int binary_format<float>::largest_power_of_ten() { -+ return 38; -+} -+ -+template <> -+inline constexpr int binary_format<double>::smallest_power_of_ten() { -+ return -342; -+} -+template <> inline constexpr int binary_format<float>::smallest_power_of_ten() { -+ return -64; -+} -+ -+template <> inline constexpr size_t binary_format<double>::max_digits() { -+ return 769; -+} -+template <> inline constexpr size_t binary_format<float>::max_digits() { -+ return 114; -+} -+ -+template <> -+inline constexpr binary_format<float>::equiv_uint -+binary_format<float>::exponent_mask() { -+ return 0x7F800000; -+} -+template <> -+inline constexpr binary_format<double>::equiv_uint -+binary_format<double>::exponent_mask() { -+ return 0x7FF0000000000000; -+} -+ -+template <> -+inline constexpr binary_format<float>::equiv_uint -+binary_format<float>::mantissa_mask() { -+ return 0x007FFFFF; -+} -+template <> -+inline constexpr binary_format<double>::equiv_uint -+binary_format<double>::mantissa_mask() { -+ return 0x000FFFFFFFFFFFFF; -+} -+ -+template <> -+inline constexpr binary_format<float>::equiv_uint -+binary_format<float>::hidden_bit_mask() { -+ return 0x00800000; -+} -+template <> -+inline constexpr binary_format<double>::equiv_uint -+binary_format<double>::hidden_bit_mask() { -+ return 0x0010000000000000; -+} -+ -+template <typename T> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void -+to_float(bool negative, adjusted_mantissa am, T &value) { -+ using fastfloat_uint = typename binary_format<T>::equiv_uint; -+ fastfloat_uint word = (fastfloat_uint)am.mantissa; -+ word |= fastfloat_uint(am.power2) -+ << binary_format<T>::mantissa_explicit_bits(); -+ word |= fastfloat_uint(negative) << binary_format<T>::sign_index(); -+#if FASTFLOAT_HAS_BIT_CAST -+ value = std::bit_cast<T>(word); -+#else -+ ::memcpy(&value, &word, sizeof(T)); -+#endif -+} -+ -+#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default -+template <typename = void> struct space_lut { -+ static constexpr bool value[] = { -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -+ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; -+}; -+ -+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE -+ -+template <typename T> constexpr bool space_lut<T>::value[]; -+ -+#endif -+ -+inline constexpr bool is_space(uint8_t c) { return space_lut<>::value[c]; } -+#endif -+ -+template <typename UC> static constexpr uint64_t int_cmp_zeros() { -+ static_assert((sizeof(UC) == 1) || (sizeof(UC) == 2) || (sizeof(UC) == 4), -+ "Unsupported character size"); -+ return (sizeof(UC) == 1) ? 0x3030303030303030 -+ : (sizeof(UC) == 2) -+ ? (uint64_t(UC('0')) << 48 | uint64_t(UC('0')) << 32 | -+ uint64_t(UC('0')) << 16 | UC('0')) -+ : (uint64_t(UC('0')) << 32 | UC('0')); -+} -+template <typename UC> static constexpr int int_cmp_len() { -+ return sizeof(uint64_t) / sizeof(UC); -+} -+template <typename UC> static constexpr UC const *str_const_nan() { -+ return nullptr; -+} -+template <> constexpr char const *str_const_nan<char>() { return "nan"; } -+template <> constexpr wchar_t const *str_const_nan<wchar_t>() { return L"nan"; } -+template <> constexpr char16_t const *str_const_nan<char16_t>() { -+ return u"nan"; -+} -+template <> constexpr char32_t const *str_const_nan<char32_t>() { -+ return U"nan"; -+} -+template <typename UC> static constexpr UC const *str_const_inf() { -+ return nullptr; -+} -+template <> constexpr char const *str_const_inf<char>() { return "infinity"; } -+template <> constexpr wchar_t const *str_const_inf<wchar_t>() { -+ return L"infinity"; -+} -+template <> constexpr char16_t const *str_const_inf<char16_t>() { -+ return u"infinity"; -+} -+template <> constexpr char32_t const *str_const_inf<char32_t>() { -+ return U"infinity"; -+} -+ -+template <typename = void> struct int_luts { -+ static constexpr uint8_t chdigit[] = { -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, -+ 255, 255, 255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 255, 255, -+ 255, 255, 255, 255, 255, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, -+ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, -+ 35, 255, 255, 255, 255, 255, 255, 10, 11, 12, 13, 14, 15, 16, 17, -+ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, -+ 33, 34, 35, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, -+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, -+ 255}; -+ -+ static constexpr size_t maxdigits_u64[] = { -+ 64, 41, 32, 28, 25, 23, 22, 21, 20, 19, 18, 18, 17, 17, 16, 16, 16, 16, -+ 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13}; -+ -+ static constexpr uint64_t min_safe_u64[] = { -+ 9223372036854775808ull, 12157665459056928801ull, 4611686018427387904, -+ 7450580596923828125, 4738381338321616896, 3909821048582988049, -+ 9223372036854775808ull, 12157665459056928801ull, 10000000000000000000ull, -+ 5559917313492231481, 2218611106740436992, 8650415919381337933, -+ 2177953337809371136, 6568408355712890625, 1152921504606846976, -+ 2862423051509815793, 6746640616477458432, 15181127029874798299ull, -+ 1638400000000000000, 3243919932521508681, 6221821273427820544, -+ 11592836324538749809ull, 876488338465357824, 1490116119384765625, -+ 2481152873203736576, 4052555153018976267, 6502111422497947648, -+ 10260628712958602189ull, 15943230000000000000ull, 787662783788549761, -+ 1152921504606846976, 1667889514952984961, 2386420683693101056, -+ 3379220508056640625, 4738381338321616896}; -+}; -+ -+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE -+ -+template <typename T> constexpr uint8_t int_luts<T>::chdigit[]; -+ -+template <typename T> constexpr size_t int_luts<T>::maxdigits_u64[]; -+ -+template <typename T> constexpr uint64_t int_luts<T>::min_safe_u64[]; -+ -+#endif -+ -+template <typename UC> -+fastfloat_really_inline constexpr uint8_t ch_to_digit(UC c) { -+ return int_luts<>::chdigit[static_cast<unsigned char>(c)]; -+} -+ -+fastfloat_really_inline constexpr size_t max_digits_u64(int base) { -+ return int_luts<>::maxdigits_u64[base - 2]; -+} -+ -+// If a u64 is exactly max_digits_u64() in length, this is -+// the value below which it has definitely overflowed. -+fastfloat_really_inline constexpr uint64_t min_safe_u64(int base) { -+ return int_luts<>::min_safe_u64[base - 2]; -+} -+ -+} // namespace fast_float -+ -+#endif -+ -+ -+#ifndef FASTFLOAT_FAST_FLOAT_H -+#define FASTFLOAT_FAST_FLOAT_H -+ -+ -+namespace fast_float { -+/** -+ * This function parses the character sequence [first,last) for a number. It -+ * parses floating-point numbers expecting a locale-indepent format equivalent -+ * to what is used by std::strtod in the default ("C") locale. The resulting -+ * floating-point value is the closest floating-point values (using either float -+ * or double), using the "round to even" convention for values that would -+ * otherwise fall right in-between two values. That is, we provide exact parsing -+ * according to the IEEE standard. -+ * -+ * Given a successful parse, the pointer (`ptr`) in the returned value is set to -+ * point right after the parsed number, and the `value` referenced is set to the -+ * parsed value. In case of error, the returned `ec` contains a representative -+ * error, otherwise the default (`std::errc()`) value is stored. -+ * -+ * The implementation does not throw and does not allocate memory (e.g., with -+ * `new` or `malloc`). -+ * -+ * Like the C++17 standard, the `fast_float::from_chars` functions take an -+ * optional last argument of the type `fast_float::chars_format`. It is a bitset -+ * value: we check whether `fmt & fast_float::chars_format::fixed` and `fmt & -+ * fast_float::chars_format::scientific` are set to determine whether we allow -+ * the fixed point and scientific notation respectively. The default is -+ * `fast_float::chars_format::general` which allows both `fixed` and -+ * `scientific`. -+ */ -+template <typename T, typename UC = char, -+ typename = FASTFLOAT_ENABLE_IF(is_supported_float_type<T>())> -+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> -+from_chars(UC const *first, UC const *last, T &value, -+ chars_format fmt = chars_format::general) noexcept; -+ -+/** -+ * Like from_chars, but accepts an `options` argument to govern number parsing. -+ */ -+template <typename T, typename UC = char> -+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> -+from_chars_advanced(UC const *first, UC const *last, T &value, -+ parse_options_t<UC> options) noexcept; -+/** -+ * from_chars for integer types. -+ */ -+template <typename T, typename UC = char, -+ typename = FASTFLOAT_ENABLE_IF(!is_supported_float_type<T>())> -+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> -+from_chars(UC const *first, UC const *last, T &value, int base = 10) noexcept; -+ -+} // namespace fast_float -+#endif // FASTFLOAT_FAST_FLOAT_H -+ -+#ifndef FASTFLOAT_ASCII_NUMBER_H -+#define FASTFLOAT_ASCII_NUMBER_H -+ -+#include <cctype> -+#include <cstdint> -+#include <cstring> -+#include <iterator> -+#include <limits> -+#include <type_traits> -+ -+ -+#ifdef FASTFLOAT_SSE2 -+#include <emmintrin.h> -+#endif -+ -+#ifdef FASTFLOAT_NEON -+#include <arm_neon.h> -+#endif -+ -+namespace fast_float { -+ -+template <typename UC> fastfloat_really_inline constexpr bool has_simd_opt() { -+#ifdef FASTFLOAT_HAS_SIMD -+ return std::is_same<UC, char16_t>::value; -+#else -+ return false; -+#endif -+} -+ -+// Next function can be micro-optimized, but compilers are entirely -+// able to optimize it well. -+template <typename UC> -+fastfloat_really_inline constexpr bool is_integer(UC c) noexcept { -+ return !(c > UC('9') || c < UC('0')); -+} -+ -+fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) { -+ return (val & 0xFF00000000000000) >> 56 | (val & 0x00FF000000000000) >> 40 | -+ (val & 0x0000FF0000000000) >> 24 | (val & 0x000000FF00000000) >> 8 | -+ (val & 0x00000000FF000000) << 8 | (val & 0x0000000000FF0000) << 24 | -+ (val & 0x000000000000FF00) << 40 | (val & 0x00000000000000FF) << 56; -+} -+ -+// Read 8 UC into a u64. Truncates UC if not char. -+template <typename UC> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t -+read8_to_u64(const UC *chars) { -+ if (cpp20_and_in_constexpr() || !std::is_same<UC, char>::value) { -+ uint64_t val = 0; -+ for (int i = 0; i < 8; ++i) { -+ val |= uint64_t(uint8_t(*chars)) << (i * 8); -+ ++chars; -+ } -+ return val; -+ } -+ uint64_t val; -+ ::memcpy(&val, chars, sizeof(uint64_t)); -+#if FASTFLOAT_IS_BIG_ENDIAN == 1 -+ // Need to read as-if the number was in little-endian order. -+ val = byteswap(val); -+#endif -+ return val; -+} -+ -+#ifdef FASTFLOAT_SSE2 -+ -+fastfloat_really_inline uint64_t simd_read8_to_u64(const __m128i data) { -+ FASTFLOAT_SIMD_DISABLE_WARNINGS -+ const __m128i packed = _mm_packus_epi16(data, data); -+#ifdef FASTFLOAT_64BIT -+ return uint64_t(_mm_cvtsi128_si64(packed)); -+#else -+ uint64_t value; -+ // Visual Studio + older versions of GCC don't support _mm_storeu_si64 -+ _mm_storel_epi64(reinterpret_cast<__m128i *>(&value), packed); -+ return value; -+#endif -+ FASTFLOAT_SIMD_RESTORE_WARNINGS -+} -+ -+fastfloat_really_inline uint64_t simd_read8_to_u64(const char16_t *chars) { -+ FASTFLOAT_SIMD_DISABLE_WARNINGS -+ return simd_read8_to_u64( -+ _mm_loadu_si128(reinterpret_cast<const __m128i *>(chars))); -+ FASTFLOAT_SIMD_RESTORE_WARNINGS -+} -+ -+#elif defined(FASTFLOAT_NEON) -+ -+fastfloat_really_inline uint64_t simd_read8_to_u64(const uint16x8_t data) { -+ FASTFLOAT_SIMD_DISABLE_WARNINGS -+ uint8x8_t utf8_packed = vmovn_u16(data); -+ return vget_lane_u64(vreinterpret_u64_u8(utf8_packed), 0); -+ FASTFLOAT_SIMD_RESTORE_WARNINGS -+} -+ -+fastfloat_really_inline uint64_t simd_read8_to_u64(const char16_t *chars) { -+ FASTFLOAT_SIMD_DISABLE_WARNINGS -+ return simd_read8_to_u64( -+ vld1q_u16(reinterpret_cast<const uint16_t *>(chars))); -+ FASTFLOAT_SIMD_RESTORE_WARNINGS -+} -+ -+#endif // FASTFLOAT_SSE2 -+ -+// MSVC SFINAE is broken pre-VS2017 -+#if defined(_MSC_VER) && _MSC_VER <= 1900 -+template <typename UC> -+#else -+template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0> -+#endif -+// dummy for compile -+uint64_t simd_read8_to_u64(UC const *) { -+ return 0; -+} -+ -+// credit @aqrit -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint32_t -+parse_eight_digits_unrolled(uint64_t val) { -+ const uint64_t mask = 0x000000FF000000FF; -+ const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32) -+ const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32) -+ val -= 0x3030303030303030; -+ val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8; -+ val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32; -+ return uint32_t(val); -+} -+ -+// Call this if chars are definitely 8 digits. -+template <typename UC> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint32_t -+parse_eight_digits_unrolled(UC const *chars) noexcept { -+ if (cpp20_and_in_constexpr() || !has_simd_opt<UC>()) { -+ return parse_eight_digits_unrolled(read8_to_u64(chars)); // truncation okay -+ } -+ return parse_eight_digits_unrolled(simd_read8_to_u64(chars)); -+} -+ -+// credit @aqrit -+fastfloat_really_inline constexpr bool -+is_made_of_eight_digits_fast(uint64_t val) noexcept { -+ return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) & -+ 0x8080808080808080)); -+} -+ -+#ifdef FASTFLOAT_HAS_SIMD -+ -+// Call this if chars might not be 8 digits. -+// Using this style (instead of is_made_of_eight_digits_fast() then -+// parse_eight_digits_unrolled()) ensures we don't load SIMD registers twice. -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool -+simd_parse_if_eight_digits_unrolled(const char16_t *chars, -+ uint64_t &i) noexcept { -+ if (cpp20_and_in_constexpr()) { -+ return false; -+ } -+#ifdef FASTFLOAT_SSE2 -+ FASTFLOAT_SIMD_DISABLE_WARNINGS -+ const __m128i data = -+ _mm_loadu_si128(reinterpret_cast<const __m128i *>(chars)); -+ -+ // (x - '0') <= 9 -+ // http://0x80.pl/articles/simd-parsing-int-sequences.html -+ const __m128i t0 = _mm_add_epi16(data, _mm_set1_epi16(32720)); -+ const __m128i t1 = _mm_cmpgt_epi16(t0, _mm_set1_epi16(-32759)); -+ -+ if (_mm_movemask_epi8(t1) == 0) { -+ i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data)); -+ return true; -+ } else -+ return false; -+ FASTFLOAT_SIMD_RESTORE_WARNINGS -+#elif defined(FASTFLOAT_NEON) -+ FASTFLOAT_SIMD_DISABLE_WARNINGS -+ const uint16x8_t data = vld1q_u16(reinterpret_cast<const uint16_t *>(chars)); -+ -+ // (x - '0') <= 9 -+ // http://0x80.pl/articles/simd-parsing-int-sequences.html -+ const uint16x8_t t0 = vsubq_u16(data, vmovq_n_u16('0')); -+ const uint16x8_t mask = vcltq_u16(t0, vmovq_n_u16('9' - '0' + 1)); -+ -+ if (vminvq_u16(mask) == 0xFFFF) { -+ i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data)); -+ return true; -+ } else -+ return false; -+ FASTFLOAT_SIMD_RESTORE_WARNINGS -+#else -+ (void)chars; -+ (void)i; -+ return false; -+#endif // FASTFLOAT_SSE2 -+} -+ -+#endif // FASTFLOAT_HAS_SIMD -+ -+// MSVC SFINAE is broken pre-VS2017 -+#if defined(_MSC_VER) && _MSC_VER <= 1900 -+template <typename UC> -+#else -+template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0> -+#endif -+// dummy for compile -+bool simd_parse_if_eight_digits_unrolled(UC const *, uint64_t &) { -+ return 0; -+} -+ -+template <typename UC, FASTFLOAT_ENABLE_IF(!std::is_same<UC, char>::value) = 0> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void -+loop_parse_if_eight_digits(const UC *&p, const UC *const pend, uint64_t &i) { -+ if (!has_simd_opt<UC>()) { -+ return; -+ } -+ while ((std::distance(p, pend) >= 8) && -+ simd_parse_if_eight_digits_unrolled( -+ p, i)) { // in rare cases, this will overflow, but that's ok -+ p += 8; -+ } -+} -+ -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void -+loop_parse_if_eight_digits(const char *&p, const char *const pend, -+ uint64_t &i) { -+ // optimizes better than parse_if_eight_digits_unrolled() for UC = char. -+ while ((std::distance(p, pend) >= 8) && -+ is_made_of_eight_digits_fast(read8_to_u64(p))) { -+ i = i * 100000000 + -+ parse_eight_digits_unrolled(read8_to_u64( -+ p)); // in rare cases, this will overflow, but that's ok -+ p += 8; -+ } -+} -+ -+enum class parse_error { -+ no_error, -+ // [JSON-only] The minus sign must be followed by an integer. -+ missing_integer_after_sign, -+ // A sign must be followed by an integer or dot. -+ missing_integer_or_dot_after_sign, -+ // [JSON-only] The integer part must not have leading zeros. -+ leading_zeros_in_integer_part, -+ // [JSON-only] The integer part must have at least one digit. -+ no_digits_in_integer_part, -+ // [JSON-only] If there is a decimal point, there must be digits in the -+ // fractional part. -+ no_digits_in_fractional_part, -+ // The mantissa must have at least one digit. -+ no_digits_in_mantissa, -+ // Scientific notation requires an exponential part. -+ missing_exponential_part, -+}; -+ -+template <typename UC> struct parsed_number_string_t { -+ int64_t exponent{0}; -+ uint64_t mantissa{0}; -+ UC const *lastmatch{nullptr}; -+ bool negative{false}; -+ bool valid{false}; -+ bool too_many_digits{false}; -+ // contains the range of the significant digits -+ span<const UC> integer{}; // non-nullable -+ span<const UC> fraction{}; // nullable -+ parse_error error{parse_error::no_error}; -+}; -+ -+using byte_span = span<const char>; -+using parsed_number_string = parsed_number_string_t<char>; -+ -+template <typename UC> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC> -+report_parse_error(UC const *p, parse_error error) { -+ parsed_number_string_t<UC> answer; -+ answer.valid = false; -+ answer.lastmatch = p; -+ answer.error = error; -+ return answer; -+} -+ -+// Assuming that you use no more than 19 digits, this will -+// parse an ASCII string. -+template <typename UC> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC> -+parse_number_string(UC const *p, UC const *pend, -+ parse_options_t<UC> options) noexcept { -+ chars_format const fmt = options.format; -+ UC const decimal_point = options.decimal_point; -+ -+ parsed_number_string_t<UC> answer; -+ answer.valid = false; -+ answer.too_many_digits = false; -+ answer.negative = (*p == UC('-')); -+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default -+ if ((*p == UC('-')) || (!(fmt & FASTFLOAT_JSONFMT) && *p == UC('+'))) { -+#else -+ if (*p == UC('-')) { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here -+#endif -+ ++p; -+ if (p == pend) { -+ return report_parse_error<UC>( -+ p, parse_error::missing_integer_or_dot_after_sign); -+ } -+ if (fmt & FASTFLOAT_JSONFMT) { -+ if (!is_integer(*p)) { // a sign must be followed by an integer -+ return report_parse_error<UC>(p, -+ parse_error::missing_integer_after_sign); -+ } -+ } else { -+ if (!is_integer(*p) && -+ (*p != -+ decimal_point)) { // a sign must be followed by an integer or the dot -+ return report_parse_error<UC>( -+ p, parse_error::missing_integer_or_dot_after_sign); -+ } -+ } -+ } -+ UC const *const start_digits = p; -+ -+ uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad) -+ -+ while ((p != pend) && is_integer(*p)) { -+ // a multiplication by 10 is cheaper than an arbitrary integer -+ // multiplication -+ i = 10 * i + -+ uint64_t(*p - -+ UC('0')); // might overflow, we will handle the overflow later -+ ++p; -+ } -+ UC const *const end_of_integer_part = p; -+ int64_t digit_count = int64_t(end_of_integer_part - start_digits); -+ answer.integer = span<const UC>(start_digits, size_t(digit_count)); -+ if (fmt & FASTFLOAT_JSONFMT) { -+ // at least 1 digit in integer part, without leading zeros -+ if (digit_count == 0) { -+ return report_parse_error<UC>(p, parse_error::no_digits_in_integer_part); -+ } -+ if ((start_digits[0] == UC('0') && digit_count > 1)) { -+ return report_parse_error<UC>(start_digits, -+ parse_error::leading_zeros_in_integer_part); -+ } -+ } -+ -+ int64_t exponent = 0; -+ const bool has_decimal_point = (p != pend) && (*p == decimal_point); -+ if (has_decimal_point) { -+ ++p; -+ UC const *before = p; -+ // can occur at most twice without overflowing, but let it occur more, since -+ // for integers with many digits, digit parsing is the primary bottleneck. -+ loop_parse_if_eight_digits(p, pend, i); -+ -+ while ((p != pend) && is_integer(*p)) { -+ uint8_t digit = uint8_t(*p - UC('0')); -+ ++p; -+ i = i * 10 + digit; // in rare cases, this will overflow, but that's ok -+ } -+ exponent = before - p; -+ answer.fraction = span<const UC>(before, size_t(p - before)); -+ digit_count -= exponent; -+ } -+ if (fmt & FASTFLOAT_JSONFMT) { -+ // at least 1 digit in fractional part -+ if (has_decimal_point && exponent == 0) { -+ return report_parse_error<UC>(p, -+ parse_error::no_digits_in_fractional_part); -+ } -+ } else if (digit_count == -+ 0) { // we must have encountered at least one integer! -+ return report_parse_error<UC>(p, parse_error::no_digits_in_mantissa); -+ } -+ int64_t exp_number = 0; // explicit exponential part -+ if (((fmt & chars_format::scientific) && (p != pend) && -+ ((UC('e') == *p) || (UC('E') == *p))) || -+ ((fmt & FASTFLOAT_FORTRANFMT) && (p != pend) && -+ ((UC('+') == *p) || (UC('-') == *p) || (UC('d') == *p) || -+ (UC('D') == *p)))) { -+ UC const *location_of_e = p; -+ if ((UC('e') == *p) || (UC('E') == *p) || (UC('d') == *p) || -+ (UC('D') == *p)) { -+ ++p; -+ } -+ bool neg_exp = false; -+ if ((p != pend) && (UC('-') == *p)) { -+ neg_exp = true; -+ ++p; -+ } else if ((p != pend) && -+ (UC('+') == -+ *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1) -+ ++p; -+ } -+ if ((p == pend) || !is_integer(*p)) { -+ if (!(fmt & chars_format::fixed)) { -+ // The exponential part is invalid for scientific notation, so it must -+ // be a trailing token for fixed notation. However, fixed notation is -+ // disabled, so report a scientific notation error. -+ return report_parse_error<UC>(p, parse_error::missing_exponential_part); -+ } -+ // Otherwise, we will be ignoring the 'e'. -+ p = location_of_e; -+ } else { -+ while ((p != pend) && is_integer(*p)) { -+ uint8_t digit = uint8_t(*p - UC('0')); -+ if (exp_number < 0x10000000) { -+ exp_number = 10 * exp_number + digit; -+ } -+ ++p; -+ } -+ if (neg_exp) { -+ exp_number = -exp_number; -+ } -+ exponent += exp_number; -+ } -+ } else { -+ // If it scientific and not fixed, we have to bail out. -+ if ((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { -+ return report_parse_error<UC>(p, parse_error::missing_exponential_part); -+ } -+ } -+ answer.lastmatch = p; -+ answer.valid = true; -+ -+ // If we frequently had to deal with long strings of digits, -+ // we could extend our code by using a 128-bit integer instead -+ // of a 64-bit integer. However, this is uncommon. -+ // -+ // We can deal with up to 19 digits. -+ if (digit_count > 19) { // this is uncommon -+ // It is possible that the integer had an overflow. -+ // We have to handle the case where we have 0.0000somenumber. -+ // We need to be mindful of the case where we only have zeroes... -+ // E.g., 0.000000000...000. -+ UC const *start = start_digits; -+ while ((start != pend) && (*start == UC('0') || *start == decimal_point)) { -+ if (*start == UC('0')) { -+ digit_count--; -+ } -+ start++; -+ } -+ -+ if (digit_count > 19) { -+ answer.too_many_digits = true; -+ // Let us start again, this time, avoiding overflows. -+ // We don't need to check if is_integer, since we use the -+ // pre-tokenized spans from above. -+ i = 0; -+ p = answer.integer.ptr; -+ UC const *int_end = p + answer.integer.len(); -+ const uint64_t minimal_nineteen_digit_integer{1000000000000000000}; -+ while ((i < minimal_nineteen_digit_integer) && (p != int_end)) { -+ i = i * 10 + uint64_t(*p - UC('0')); -+ ++p; -+ } -+ if (i >= minimal_nineteen_digit_integer) { // We have a big integers -+ exponent = end_of_integer_part - p + exp_number; -+ } else { // We have a value with a fractional component. -+ p = answer.fraction.ptr; -+ UC const *frac_end = p + answer.fraction.len(); -+ while ((i < minimal_nineteen_digit_integer) && (p != frac_end)) { -+ i = i * 10 + uint64_t(*p - UC('0')); -+ ++p; -+ } -+ exponent = answer.fraction.ptr - p + exp_number; -+ } -+ // We have now corrected both exponent and i, to a truncated value -+ } -+ } -+ answer.exponent = exponent; -+ answer.mantissa = i; -+ return answer; -+} -+ -+template <typename T, typename UC> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> -+parse_int_string(UC const *p, UC const *pend, T &value, int base) { -+ from_chars_result_t<UC> answer; -+ -+ UC const *const first = p; -+ -+ bool negative = (*p == UC('-')); -+ if (!std::is_signed<T>::value && negative) { -+ answer.ec = std::errc::invalid_argument; -+ answer.ptr = first; -+ return answer; -+ } -+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default -+ if ((*p == UC('-')) || (*p == UC('+'))) { -+#else -+ if (*p == UC('-')) { -+#endif -+ ++p; -+ } -+ -+ UC const *const start_num = p; -+ -+ while (p != pend && *p == UC('0')) { -+ ++p; -+ } -+ -+ const bool has_leading_zeros = p > start_num; -+ -+ UC const *const start_digits = p; -+ -+ uint64_t i = 0; -+ if (base == 10) { -+ loop_parse_if_eight_digits(p, pend, i); // use SIMD if possible -+ } -+ while (p != pend) { -+ uint8_t digit = ch_to_digit(*p); -+ if (digit >= base) { -+ break; -+ } -+ i = uint64_t(base) * i + digit; // might overflow, check this later -+ p++; -+ } -+ -+ size_t digit_count = size_t(p - start_digits); -+ -+ if (digit_count == 0) { -+ if (has_leading_zeros) { -+ value = 0; -+ answer.ec = std::errc(); -+ answer.ptr = p; -+ } else { -+ answer.ec = std::errc::invalid_argument; -+ answer.ptr = first; -+ } -+ return answer; -+ } -+ -+ answer.ptr = p; -+ -+ // check u64 overflow -+ size_t max_digits = max_digits_u64(base); -+ if (digit_count > max_digits) { -+ answer.ec = std::errc::result_out_of_range; -+ return answer; -+ } -+ // this check can be eliminated for all other types, but they will all require -+ // a max_digits(base) equivalent -+ if (digit_count == max_digits && i < min_safe_u64(base)) { -+ answer.ec = std::errc::result_out_of_range; -+ return answer; -+ } -+ -+ // check other types overflow -+ if (!std::is_same<T, uint64_t>::value) { -+ if (i > uint64_t(std::numeric_limits<T>::max()) + uint64_t(negative)) { -+ answer.ec = std::errc::result_out_of_range; -+ return answer; -+ } -+ } -+ -+ if (negative) { -+#ifdef FASTFLOAT_VISUAL_STUDIO -+#pragma warning(push) -+#pragma warning(disable : 4146) -+#endif -+ // this weird workaround is required because: -+ // - converting unsigned to signed when its value is greater than signed max -+ // is UB pre-C++23. -+ // - reinterpret_casting (~i + 1) would work, but it is not constexpr -+ // this is always optimized into a neg instruction (note: T is an integer -+ // type) -+ value = T(-std::numeric_limits<T>::max() - -+ T(i - uint64_t(std::numeric_limits<T>::max()))); -+#ifdef FASTFLOAT_VISUAL_STUDIO -+#pragma warning(pop) -+#endif -+ } else { -+ value = T(i); -+ } -+ -+ answer.ec = std::errc(); -+ return answer; -+} -+ -+} // namespace fast_float -+ -+#endif -+ -+#ifndef FASTFLOAT_FAST_TABLE_H -+#define FASTFLOAT_FAST_TABLE_H -+ -+#include <cstdint> -+ -+namespace fast_float { -+ -+/** -+ * When mapping numbers from decimal to binary, -+ * we go from w * 10^q to m * 2^p but we have -+ * 10^q = 5^q * 2^q, so effectively -+ * we are trying to match -+ * w * 2^q * 5^q to m * 2^p. Thus the powers of two -+ * are not a concern since they can be represented -+ * exactly using the binary notation, only the powers of five -+ * affect the binary significand. -+ */ -+ -+/** -+ * The smallest non-zero float (binary64) is 2^-1074. -+ * We take as input numbers of the form w x 10^q where w < 2^64. -+ * We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076. -+ * However, we have that -+ * (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^-1074. -+ * Thus it is possible for a number of the form w * 10^-342 where -+ * w is a 64-bit value to be a non-zero floating-point number. -+ ********* -+ * Any number of form w * 10^309 where w>= 1 is going to be -+ * infinite in binary64 so we never need to worry about powers -+ * of 5 greater than 308. -+ */ -+template <class unused = void> struct powers_template { -+ -+ constexpr static int smallest_power_of_five = -+ binary_format<double>::smallest_power_of_ten(); -+ constexpr static int largest_power_of_five = -+ binary_format<double>::largest_power_of_ten(); -+ constexpr static int number_of_entries = -+ 2 * (largest_power_of_five - smallest_power_of_five + 1); -+ // Powers of five from 5^-342 all the way to 5^308 rounded toward one. -+ constexpr static uint64_t power_of_five_128[number_of_entries] = { -+ 0xeef453d6923bd65a, 0x113faa2906a13b3f, -+ 0x9558b4661b6565f8, 0x4ac7ca59a424c507, -+ 0xbaaee17fa23ebf76, 0x5d79bcf00d2df649, -+ 0xe95a99df8ace6f53, 0xf4d82c2c107973dc, -+ 0x91d8a02bb6c10594, 0x79071b9b8a4be869, -+ 0xb64ec836a47146f9, 0x9748e2826cdee284, -+ 0xe3e27a444d8d98b7, 0xfd1b1b2308169b25, -+ 0x8e6d8c6ab0787f72, 0xfe30f0f5e50e20f7, -+ 0xb208ef855c969f4f, 0xbdbd2d335e51a935, -+ 0xde8b2b66b3bc4723, 0xad2c788035e61382, -+ 0x8b16fb203055ac76, 0x4c3bcb5021afcc31, -+ 0xaddcb9e83c6b1793, 0xdf4abe242a1bbf3d, -+ 0xd953e8624b85dd78, 0xd71d6dad34a2af0d, -+ 0x87d4713d6f33aa6b, 0x8672648c40e5ad68, -+ 0xa9c98d8ccb009506, 0x680efdaf511f18c2, -+ 0xd43bf0effdc0ba48, 0x212bd1b2566def2, -+ 0x84a57695fe98746d, 0x14bb630f7604b57, -+ 0xa5ced43b7e3e9188, 0x419ea3bd35385e2d, -+ 0xcf42894a5dce35ea, 0x52064cac828675b9, -+ 0x818995ce7aa0e1b2, 0x7343efebd1940993, -+ 0xa1ebfb4219491a1f, 0x1014ebe6c5f90bf8, -+ 0xca66fa129f9b60a6, 0xd41a26e077774ef6, -+ 0xfd00b897478238d0, 0x8920b098955522b4, -+ 0x9e20735e8cb16382, 0x55b46e5f5d5535b0, -+ 0xc5a890362fddbc62, 0xeb2189f734aa831d, -+ 0xf712b443bbd52b7b, 0xa5e9ec7501d523e4, -+ 0x9a6bb0aa55653b2d, 0x47b233c92125366e, -+ 0xc1069cd4eabe89f8, 0x999ec0bb696e840a, -+ 0xf148440a256e2c76, 0xc00670ea43ca250d, -+ 0x96cd2a865764dbca, 0x380406926a5e5728, -+ 0xbc807527ed3e12bc, 0xc605083704f5ecf2, -+ 0xeba09271e88d976b, 0xf7864a44c633682e, -+ 0x93445b8731587ea3, 0x7ab3ee6afbe0211d, -+ 0xb8157268fdae9e4c, 0x5960ea05bad82964, -+ 0xe61acf033d1a45df, 0x6fb92487298e33bd, -+ 0x8fd0c16206306bab, 0xa5d3b6d479f8e056, -+ 0xb3c4f1ba87bc8696, 0x8f48a4899877186c, -+ 0xe0b62e2929aba83c, 0x331acdabfe94de87, -+ 0x8c71dcd9ba0b4925, 0x9ff0c08b7f1d0b14, -+ 0xaf8e5410288e1b6f, 0x7ecf0ae5ee44dd9, -+ 0xdb71e91432b1a24a, 0xc9e82cd9f69d6150, -+ 0x892731ac9faf056e, 0xbe311c083a225cd2, -+ 0xab70fe17c79ac6ca, 0x6dbd630a48aaf406, -+ 0xd64d3d9db981787d, 0x92cbbccdad5b108, -+ 0x85f0468293f0eb4e, 0x25bbf56008c58ea5, -+ 0xa76c582338ed2621, 0xaf2af2b80af6f24e, -+ 0xd1476e2c07286faa, 0x1af5af660db4aee1, -+ 0x82cca4db847945ca, 0x50d98d9fc890ed4d, -+ 0xa37fce126597973c, 0xe50ff107bab528a0, -+ 0xcc5fc196fefd7d0c, 0x1e53ed49a96272c8, -+ 0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7a, -+ 0x9faacf3df73609b1, 0x77b191618c54e9ac, -+ 0xc795830d75038c1d, 0xd59df5b9ef6a2417, -+ 0xf97ae3d0d2446f25, 0x4b0573286b44ad1d, -+ 0x9becce62836ac577, 0x4ee367f9430aec32, -+ 0xc2e801fb244576d5, 0x229c41f793cda73f, -+ 0xf3a20279ed56d48a, 0x6b43527578c1110f, -+ 0x9845418c345644d6, 0x830a13896b78aaa9, -+ 0xbe5691ef416bd60c, 0x23cc986bc656d553, -+ 0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa8, -+ 0x94b3a202eb1c3f39, 0x7bf7d71432f3d6a9, -+ 0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc53, -+ 0xe858ad248f5c22c9, 0xd1b3400f8f9cff68, -+ 0x91376c36d99995be, 0x23100809b9c21fa1, -+ 0xb58547448ffffb2d, 0xabd40a0c2832a78a, -+ 0xe2e69915b3fff9f9, 0x16c90c8f323f516c, -+ 0x8dd01fad907ffc3b, 0xae3da7d97f6792e3, -+ 0xb1442798f49ffb4a, 0x99cd11cfdf41779c, -+ 0xdd95317f31c7fa1d, 0x40405643d711d583, -+ 0x8a7d3eef7f1cfc52, 0x482835ea666b2572, -+ 0xad1c8eab5ee43b66, 0xda3243650005eecf, -+ 0xd863b256369d4a40, 0x90bed43e40076a82, -+ 0x873e4f75e2224e68, 0x5a7744a6e804a291, -+ 0xa90de3535aaae202, 0x711515d0a205cb36, -+ 0xd3515c2831559a83, 0xd5a5b44ca873e03, -+ 0x8412d9991ed58091, 0xe858790afe9486c2, -+ 0xa5178fff668ae0b6, 0x626e974dbe39a872, -+ 0xce5d73ff402d98e3, 0xfb0a3d212dc8128f, -+ 0x80fa687f881c7f8e, 0x7ce66634bc9d0b99, -+ 0xa139029f6a239f72, 0x1c1fffc1ebc44e80, -+ 0xc987434744ac874e, 0xa327ffb266b56220, -+ 0xfbe9141915d7a922, 0x4bf1ff9f0062baa8, -+ 0x9d71ac8fada6c9b5, 0x6f773fc3603db4a9, -+ 0xc4ce17b399107c22, 0xcb550fb4384d21d3, -+ 0xf6019da07f549b2b, 0x7e2a53a146606a48, -+ 0x99c102844f94e0fb, 0x2eda7444cbfc426d, -+ 0xc0314325637a1939, 0xfa911155fefb5308, -+ 0xf03d93eebc589f88, 0x793555ab7eba27ca, -+ 0x96267c7535b763b5, 0x4bc1558b2f3458de, -+ 0xbbb01b9283253ca2, 0x9eb1aaedfb016f16, -+ 0xea9c227723ee8bcb, 0x465e15a979c1cadc, -+ 0x92a1958a7675175f, 0xbfacd89ec191ec9, -+ 0xb749faed14125d36, 0xcef980ec671f667b, -+ 0xe51c79a85916f484, 0x82b7e12780e7401a, -+ 0x8f31cc0937ae58d2, 0xd1b2ecb8b0908810, -+ 0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa15, -+ 0xdfbdcece67006ac9, 0x67a791e093e1d49a, -+ 0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e0, -+ 0xaecc49914078536d, 0x58fae9f773886e18, -+ 0xda7f5bf590966848, 0xaf39a475506a899e, -+ 0x888f99797a5e012d, 0x6d8406c952429603, -+ 0xaab37fd7d8f58178, 0xc8e5087ba6d33b83, -+ 0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a64, -+ 0x855c3be0a17fcd26, 0x5cf2eea09a55067f, -+ 0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481e, -+ 0xd0601d8efc57b08b, 0xf13b94daf124da26, -+ 0x823c12795db6ce57, 0x76c53d08d6b70858, -+ 0xa2cb1717b52481ed, 0x54768c4b0c64ca6e, -+ 0xcb7ddcdda26da268, 0xa9942f5dcf7dfd09, -+ 0xfe5d54150b090b02, 0xd3f93b35435d7c4c, -+ 0x9efa548d26e5a6e1, 0xc47bc5014a1a6daf, -+ 0xc6b8e9b0709f109a, 0x359ab6419ca1091b, -+ 0xf867241c8cc6d4c0, 0xc30163d203c94b62, -+ 0x9b407691d7fc44f8, 0x79e0de63425dcf1d, -+ 0xc21094364dfb5636, 0x985915fc12f542e4, -+ 0xf294b943e17a2bc4, 0x3e6f5b7b17b2939d, -+ 0x979cf3ca6cec5b5a, 0xa705992ceecf9c42, -+ 0xbd8430bd08277231, 0x50c6ff782a838353, -+ 0xece53cec4a314ebd, 0xa4f8bf5635246428, -+ 0x940f4613ae5ed136, 0x871b7795e136be99, -+ 0xb913179899f68584, 0x28e2557b59846e3f, -+ 0xe757dd7ec07426e5, 0x331aeada2fe589cf, -+ 0x9096ea6f3848984f, 0x3ff0d2c85def7621, -+ 0xb4bca50b065abe63, 0xfed077a756b53a9, -+ 0xe1ebce4dc7f16dfb, 0xd3e8495912c62894, -+ 0x8d3360f09cf6e4bd, 0x64712dd7abbbd95c, -+ 0xb080392cc4349dec, 0xbd8d794d96aacfb3, -+ 0xdca04777f541c567, 0xecf0d7a0fc5583a0, -+ 0x89e42caaf9491b60, 0xf41686c49db57244, -+ 0xac5d37d5b79b6239, 0x311c2875c522ced5, -+ 0xd77485cb25823ac7, 0x7d633293366b828b, -+ 0x86a8d39ef77164bc, 0xae5dff9c02033197, -+ 0xa8530886b54dbdeb, 0xd9f57f830283fdfc, -+ 0xd267caa862a12d66, 0xd072df63c324fd7b, -+ 0x8380dea93da4bc60, 0x4247cb9e59f71e6d, -+ 0xa46116538d0deb78, 0x52d9be85f074e608, -+ 0xcd795be870516656, 0x67902e276c921f8b, -+ 0x806bd9714632dff6, 0xba1cd8a3db53b6, -+ 0xa086cfcd97bf97f3, 0x80e8a40eccd228a4, -+ 0xc8a883c0fdaf7df0, 0x6122cd128006b2cd, -+ 0xfad2a4b13d1b5d6c, 0x796b805720085f81, -+ 0x9cc3a6eec6311a63, 0xcbe3303674053bb0, -+ 0xc3f490aa77bd60fc, 0xbedbfc4411068a9c, -+ 0xf4f1b4d515acb93b, 0xee92fb5515482d44, -+ 0x991711052d8bf3c5, 0x751bdd152d4d1c4a, -+ 0xbf5cd54678eef0b6, 0xd262d45a78a0635d, -+ 0xef340a98172aace4, 0x86fb897116c87c34, -+ 0x9580869f0e7aac0e, 0xd45d35e6ae3d4da0, -+ 0xbae0a846d2195712, 0x8974836059cca109, -+ 0xe998d258869facd7, 0x2bd1a438703fc94b, -+ 0x91ff83775423cc06, 0x7b6306a34627ddcf, -+ 0xb67f6455292cbf08, 0x1a3bc84c17b1d542, -+ 0xe41f3d6a7377eeca, 0x20caba5f1d9e4a93, -+ 0x8e938662882af53e, 0x547eb47b7282ee9c, -+ 0xb23867fb2a35b28d, 0xe99e619a4f23aa43, -+ 0xdec681f9f4c31f31, 0x6405fa00e2ec94d4, -+ 0x8b3c113c38f9f37e, 0xde83bc408dd3dd04, -+ 0xae0b158b4738705e, 0x9624ab50b148d445, -+ 0xd98ddaee19068c76, 0x3badd624dd9b0957, -+ 0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d6, -+ 0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4c, -+ 0xd47487cc8470652b, 0x7647c3200069671f, -+ 0x84c8d4dfd2c63f3b, 0x29ecd9f40041e073, -+ 0xa5fb0a17c777cf09, 0xf468107100525890, -+ 0xcf79cc9db955c2cc, 0x7182148d4066eeb4, -+ 0x81ac1fe293d599bf, 0xc6f14cd848405530, -+ 0xa21727db38cb002f, 0xb8ada00e5a506a7c, -+ 0xca9cf1d206fdc03b, 0xa6d90811f0e4851c, -+ 0xfd442e4688bd304a, 0x908f4a166d1da663, -+ 0x9e4a9cec15763e2e, 0x9a598e4e043287fe, -+ 0xc5dd44271ad3cdba, 0x40eff1e1853f29fd, -+ 0xf7549530e188c128, 0xd12bee59e68ef47c, -+ 0x9a94dd3e8cf578b9, 0x82bb74f8301958ce, -+ 0xc13a148e3032d6e7, 0xe36a52363c1faf01, -+ 0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac1, -+ 0x96f5600f15a7b7e5, 0x29ab103a5ef8c0b9, -+ 0xbcb2b812db11a5de, 0x7415d448f6b6f0e7, -+ 0xebdf661791d60f56, 0x111b495b3464ad21, -+ 0x936b9fcebb25c995, 0xcab10dd900beec34, -+ 0xb84687c269ef3bfb, 0x3d5d514f40eea742, -+ 0xe65829b3046b0afa, 0xcb4a5a3112a5112, -+ 0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ab, -+ 0xb3f4e093db73a093, 0x59ed216765690f56, -+ 0xe0f218b8d25088b8, 0x306869c13ec3532c, -+ 0x8c974f7383725573, 0x1e414218c73a13fb, -+ 0xafbd2350644eeacf, 0xe5d1929ef90898fa, -+ 0xdbac6c247d62a583, 0xdf45f746b74abf39, -+ 0x894bc396ce5da772, 0x6b8bba8c328eb783, -+ 0xab9eb47c81f5114f, 0x66ea92f3f326564, -+ 0xd686619ba27255a2, 0xc80a537b0efefebd, -+ 0x8613fd0145877585, 0xbd06742ce95f5f36, -+ 0xa798fc4196e952e7, 0x2c48113823b73704, -+ 0xd17f3b51fca3a7a0, 0xf75a15862ca504c5, -+ 0x82ef85133de648c4, 0x9a984d73dbe722fb, -+ 0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebba, -+ 0xcc963fee10b7d1b3, 0x318df905079926a8, -+ 0xffbbcfe994e5c61f, 0xfdf17746497f7052, -+ 0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa633, -+ 0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc0, -+ 0xf9bd690a1b68637b, 0x3dfdce7aa3c673b0, -+ 0x9c1661a651213e2d, 0x6bea10ca65c084e, -+ 0xc31bfa0fe5698db8, 0x486e494fcff30a62, -+ 0xf3e2f893dec3f126, 0x5a89dba3c3efccfa, -+ 0x986ddb5c6b3a76b7, 0xf89629465a75e01c, -+ 0xbe89523386091465, 0xf6bbb397f1135823, -+ 0xee2ba6c0678b597f, 0x746aa07ded582e2c, -+ 0x94db483840b717ef, 0xa8c2a44eb4571cdc, -+ 0xba121a4650e4ddeb, 0x92f34d62616ce413, -+ 0xe896a0d7e51e1566, 0x77b020baf9c81d17, -+ 0x915e2486ef32cd60, 0xace1474dc1d122e, -+ 0xb5b5ada8aaff80b8, 0xd819992132456ba, -+ 0xe3231912d5bf60e6, 0x10e1fff697ed6c69, -+ 0x8df5efabc5979c8f, 0xca8d3ffa1ef463c1, -+ 0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb2, -+ 0xddd0467c64bce4a0, 0xac7cb3f6d05ddbde, -+ 0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96b, -+ 0xad4ab7112eb3929d, 0x86c16c98d2c953c6, -+ 0xd89d64d57a607744, 0xe871c7bf077ba8b7, -+ 0x87625f056c7c4a8b, 0x11471cd764ad4972, -+ 0xa93af6c6c79b5d2d, 0xd598e40d3dd89bcf, -+ 0xd389b47879823479, 0x4aff1d108d4ec2c3, -+ 0x843610cb4bf160cb, 0xcedf722a585139ba, -+ 0xa54394fe1eedb8fe, 0xc2974eb4ee658828, -+ 0xce947a3da6a9273e, 0x733d226229feea32, -+ 0x811ccc668829b887, 0x806357d5a3f525f, -+ 0xa163ff802a3426a8, 0xca07c2dcb0cf26f7, -+ 0xc9bcff6034c13052, 0xfc89b393dd02f0b5, -+ 0xfc2c3f3841f17c67, 0xbbac2078d443ace2, -+ 0x9d9ba7832936edc0, 0xd54b944b84aa4c0d, -+ 0xc5029163f384a931, 0xa9e795e65d4df11, -+ 0xf64335bcf065d37d, 0x4d4617b5ff4a16d5, -+ 0x99ea0196163fa42e, 0x504bced1bf8e4e45, -+ 0xc06481fb9bcf8d39, 0xe45ec2862f71e1d6, -+ 0xf07da27a82c37088, 0x5d767327bb4e5a4c, -+ 0x964e858c91ba2655, 0x3a6a07f8d510f86f, -+ 0xbbe226efb628afea, 0x890489f70a55368b, -+ 0xeadab0aba3b2dbe5, 0x2b45ac74ccea842e, -+ 0x92c8ae6b464fc96f, 0x3b0b8bc90012929d, -+ 0xb77ada0617e3bbcb, 0x9ce6ebb40173744, -+ 0xe55990879ddcaabd, 0xcc420a6a101d0515, -+ 0x8f57fa54c2a9eab6, 0x9fa946824a12232d, -+ 0xb32df8e9f3546564, 0x47939822dc96abf9, -+ 0xdff9772470297ebd, 0x59787e2b93bc56f7, -+ 0x8bfbea76c619ef36, 0x57eb4edb3c55b65a, -+ 0xaefae51477a06b03, 0xede622920b6b23f1, -+ 0xdab99e59958885c4, 0xe95fab368e45eced, -+ 0x88b402f7fd75539b, 0x11dbcb0218ebb414, -+ 0xaae103b5fcd2a881, 0xd652bdc29f26a119, -+ 0xd59944a37c0752a2, 0x4be76d3346f0495f, -+ 0x857fcae62d8493a5, 0x6f70a4400c562ddb, -+ 0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb952, -+ 0xd097ad07a71f26b2, 0x7e2000a41346a7a7, -+ 0x825ecc24c873782f, 0x8ed400668c0c28c8, -+ 0xa2f67f2dfa90563b, 0x728900802f0f32fa, -+ 0xcbb41ef979346bca, 0x4f2b40a03ad2ffb9, -+ 0xfea126b7d78186bc, 0xe2f610c84987bfa8, -+ 0x9f24b832e6b0f436, 0xdd9ca7d2df4d7c9, -+ 0xc6ede63fa05d3143, 0x91503d1c79720dbb, -+ 0xf8a95fcf88747d94, 0x75a44c6397ce912a, -+ 0x9b69dbe1b548ce7c, 0xc986afbe3ee11aba, -+ 0xc24452da229b021b, 0xfbe85badce996168, -+ 0xf2d56790ab41c2a2, 0xfae27299423fb9c3, -+ 0x97c560ba6b0919a5, 0xdccd879fc967d41a, -+ 0xbdb6b8e905cb600f, 0x5400e987bbc1c920, -+ 0xed246723473e3813, 0x290123e9aab23b68, -+ 0x9436c0760c86e30b, 0xf9a0b6720aaf6521, -+ 0xb94470938fa89bce, 0xf808e40e8d5b3e69, -+ 0xe7958cb87392c2c2, 0xb60b1d1230b20e04, -+ 0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c2, -+ 0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af3, -+ 0xe2280b6c20dd5232, 0x25c6da63c38de1b0, -+ 0x8d590723948a535f, 0x579c487e5a38ad0e, -+ 0xb0af48ec79ace837, 0x2d835a9df0c6d851, -+ 0xdcdb1b2798182244, 0xf8e431456cf88e65, -+ 0x8a08f0f8bf0f156b, 0x1b8e9ecb641b58ff, -+ 0xac8b2d36eed2dac5, 0xe272467e3d222f3f, -+ 0xd7adf884aa879177, 0x5b0ed81dcc6abb0f, -+ 0x86ccbb52ea94baea, 0x98e947129fc2b4e9, -+ 0xa87fea27a539e9a5, 0x3f2398d747b36224, -+ 0xd29fe4b18e88640e, 0x8eec7f0d19a03aad, -+ 0x83a3eeeef9153e89, 0x1953cf68300424ac, -+ 0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd7, -+ 0xcdb02555653131b6, 0x3792f412cb06794d, -+ 0x808e17555f3ebf11, 0xe2bbd88bbee40bd0, -+ 0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec4, -+ 0xc8de047564d20a8b, 0xf245825a5a445275, -+ 0xfb158592be068d2e, 0xeed6e2f0f0d56712, -+ 0x9ced737bb6c4183d, 0x55464dd69685606b, -+ 0xc428d05aa4751e4c, 0xaa97e14c3c26b886, -+ 0xf53304714d9265df, 0xd53dd99f4b3066a8, -+ 0x993fe2c6d07b7fab, 0xe546a8038efe4029, -+ 0xbf8fdb78849a5f96, 0xde98520472bdd033, -+ 0xef73d256a5c0f77c, 0x963e66858f6d4440, -+ 0x95a8637627989aad, 0xdde7001379a44aa8, -+ 0xbb127c53b17ec159, 0x5560c018580d5d52, -+ 0xe9d71b689dde71af, 0xaab8f01e6e10b4a6, -+ 0x9226712162ab070d, 0xcab3961304ca70e8, -+ 0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d22, -+ 0xe45c10c42a2b3b05, 0x8cb89a7db77c506a, -+ 0x8eb98a7a9a5b04e3, 0x77f3608e92adb242, -+ 0xb267ed1940f1c61c, 0x55f038b237591ed3, -+ 0xdf01e85f912e37a3, 0x6b6c46dec52f6688, -+ 0x8b61313bbabce2c6, 0x2323ac4b3b3da015, -+ 0xae397d8aa96c1b77, 0xabec975e0a0d081a, -+ 0xd9c7dced53c72255, 0x96e7bd358c904a21, -+ 0x881cea14545c7575, 0x7e50d64177da2e54, -+ 0xaa242499697392d2, 0xdde50bd1d5d0b9e9, -+ 0xd4ad2dbfc3d07787, 0x955e4ec64b44e864, -+ 0x84ec3c97da624ab4, 0xbd5af13bef0b113e, -+ 0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58e, -+ 0xcfb11ead453994ba, 0x67de18eda5814af2, -+ 0x81ceb32c4b43fcf4, 0x80eacf948770ced7, -+ 0xa2425ff75e14fc31, 0xa1258379a94d028d, -+ 0xcad2f7f5359a3b3e, 0x96ee45813a04330, -+ 0xfd87b5f28300ca0d, 0x8bca9d6e188853fc, -+ 0x9e74d1b791e07e48, 0x775ea264cf55347e, -+ 0xc612062576589dda, 0x95364afe032a819e, -+ 0xf79687aed3eec551, 0x3a83ddbd83f52205, -+ 0x9abe14cd44753b52, 0xc4926a9672793543, -+ 0xc16d9a0095928a27, 0x75b7053c0f178294, -+ 0xf1c90080baf72cb1, 0x5324c68b12dd6339, -+ 0x971da05074da7bee, 0xd3f6fc16ebca5e04, -+ 0xbce5086492111aea, 0x88f4bb1ca6bcf585, -+ 0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6, -+ 0x9392ee8e921d5d07, 0x3aff322e62439fd0, -+ 0xb877aa3236a4b449, 0x9befeb9fad487c3, -+ 0xe69594bec44de15b, 0x4c2ebe687989a9b4, -+ 0x901d7cf73ab0acd9, 0xf9d37014bf60a11, -+ 0xb424dc35095cd80f, 0x538484c19ef38c95, -+ 0xe12e13424bb40e13, 0x2865a5f206b06fba, -+ 0x8cbccc096f5088cb, 0xf93f87b7442e45d4, -+ 0xafebff0bcb24aafe, 0xf78f69a51539d749, -+ 0xdbe6fecebdedd5be, 0xb573440e5a884d1c, -+ 0x89705f4136b4a597, 0x31680a88f8953031, -+ 0xabcc77118461cefc, 0xfdc20d2b36ba7c3e, -+ 0xd6bf94d5e57a42bc, 0x3d32907604691b4d, -+ 0x8637bd05af6c69b5, 0xa63f9a49c2c1b110, -+ 0xa7c5ac471b478423, 0xfcf80dc33721d54, -+ 0xd1b71758e219652b, 0xd3c36113404ea4a9, -+ 0x83126e978d4fdf3b, 0x645a1cac083126ea, -+ 0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4, -+ 0xcccccccccccccccc, 0xcccccccccccccccd, -+ 0x8000000000000000, 0x0, -+ 0xa000000000000000, 0x0, -+ 0xc800000000000000, 0x0, -+ 0xfa00000000000000, 0x0, -+ 0x9c40000000000000, 0x0, -+ 0xc350000000000000, 0x0, -+ 0xf424000000000000, 0x0, -+ 0x9896800000000000, 0x0, -+ 0xbebc200000000000, 0x0, -+ 0xee6b280000000000, 0x0, -+ 0x9502f90000000000, 0x0, -+ 0xba43b74000000000, 0x0, -+ 0xe8d4a51000000000, 0x0, -+ 0x9184e72a00000000, 0x0, -+ 0xb5e620f480000000, 0x0, -+ 0xe35fa931a0000000, 0x0, -+ 0x8e1bc9bf04000000, 0x0, -+ 0xb1a2bc2ec5000000, 0x0, -+ 0xde0b6b3a76400000, 0x0, -+ 0x8ac7230489e80000, 0x0, -+ 0xad78ebc5ac620000, 0x0, -+ 0xd8d726b7177a8000, 0x0, -+ 0x878678326eac9000, 0x0, -+ 0xa968163f0a57b400, 0x0, -+ 0xd3c21bcecceda100, 0x0, -+ 0x84595161401484a0, 0x0, -+ 0xa56fa5b99019a5c8, 0x0, -+ 0xcecb8f27f4200f3a, 0x0, -+ 0x813f3978f8940984, 0x4000000000000000, -+ 0xa18f07d736b90be5, 0x5000000000000000, -+ 0xc9f2c9cd04674ede, 0xa400000000000000, -+ 0xfc6f7c4045812296, 0x4d00000000000000, -+ 0x9dc5ada82b70b59d, 0xf020000000000000, -+ 0xc5371912364ce305, 0x6c28000000000000, -+ 0xf684df56c3e01bc6, 0xc732000000000000, -+ 0x9a130b963a6c115c, 0x3c7f400000000000, -+ 0xc097ce7bc90715b3, 0x4b9f100000000000, -+ 0xf0bdc21abb48db20, 0x1e86d40000000000, -+ 0x96769950b50d88f4, 0x1314448000000000, -+ 0xbc143fa4e250eb31, 0x17d955a000000000, -+ 0xeb194f8e1ae525fd, 0x5dcfab0800000000, -+ 0x92efd1b8d0cf37be, 0x5aa1cae500000000, -+ 0xb7abc627050305ad, 0xf14a3d9e40000000, -+ 0xe596b7b0c643c719, 0x6d9ccd05d0000000, -+ 0x8f7e32ce7bea5c6f, 0xe4820023a2000000, -+ 0xb35dbf821ae4f38b, 0xdda2802c8a800000, -+ 0xe0352f62a19e306e, 0xd50b2037ad200000, -+ 0x8c213d9da502de45, 0x4526f422cc340000, -+ 0xaf298d050e4395d6, 0x9670b12b7f410000, -+ 0xdaf3f04651d47b4c, 0x3c0cdd765f114000, -+ 0x88d8762bf324cd0f, 0xa5880a69fb6ac800, -+ 0xab0e93b6efee0053, 0x8eea0d047a457a00, -+ 0xd5d238a4abe98068, 0x72a4904598d6d880, -+ 0x85a36366eb71f041, 0x47a6da2b7f864750, -+ 0xa70c3c40a64e6c51, 0x999090b65f67d924, -+ 0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d, -+ 0x82818f1281ed449f, 0xbff8f10e7a8921a4, -+ 0xa321f2d7226895c7, 0xaff72d52192b6a0d, -+ 0xcbea6f8ceb02bb39, 0x9bf4f8a69f764490, -+ 0xfee50b7025c36a08, 0x2f236d04753d5b4, -+ 0x9f4f2726179a2245, 0x1d762422c946590, -+ 0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef5, -+ 0xf8ebad2b84e0d58b, 0xd2e0898765a7deb2, -+ 0x9b934c3b330c8577, 0x63cc55f49f88eb2f, -+ 0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fb, -+ 0xf316271c7fc3908a, 0x8bef464e3945ef7a, -+ 0x97edd871cfda3a56, 0x97758bf0e3cbb5ac, -+ 0xbde94e8e43d0c8ec, 0x3d52eeed1cbea317, -+ 0xed63a231d4c4fb27, 0x4ca7aaa863ee4bdd, -+ 0x945e455f24fb1cf8, 0x8fe8caa93e74ef6a, -+ 0xb975d6b6ee39e436, 0xb3e2fd538e122b44, -+ 0xe7d34c64a9c85d44, 0x60dbbca87196b616, -+ 0x90e40fbeea1d3a4a, 0xbc8955e946fe31cd, -+ 0xb51d13aea4a488dd, 0x6babab6398bdbe41, -+ 0xe264589a4dcdab14, 0xc696963c7eed2dd1, -+ 0x8d7eb76070a08aec, 0xfc1e1de5cf543ca2, -+ 0xb0de65388cc8ada8, 0x3b25a55f43294bcb, -+ 0xdd15fe86affad912, 0x49ef0eb713f39ebe, -+ 0x8a2dbf142dfcc7ab, 0x6e3569326c784337, -+ 0xacb92ed9397bf996, 0x49c2c37f07965404, -+ 0xd7e77a8f87daf7fb, 0xdc33745ec97be906, -+ 0x86f0ac99b4e8dafd, 0x69a028bb3ded71a3, -+ 0xa8acd7c0222311bc, 0xc40832ea0d68ce0c, -+ 0xd2d80db02aabd62b, 0xf50a3fa490c30190, -+ 0x83c7088e1aab65db, 0x792667c6da79e0fa, -+ 0xa4b8cab1a1563f52, 0x577001b891185938, -+ 0xcde6fd5e09abcf26, 0xed4c0226b55e6f86, -+ 0x80b05e5ac60b6178, 0x544f8158315b05b4, -+ 0xa0dc75f1778e39d6, 0x696361ae3db1c721, -+ 0xc913936dd571c84c, 0x3bc3a19cd1e38e9, -+ 0xfb5878494ace3a5f, 0x4ab48a04065c723, -+ 0x9d174b2dcec0e47b, 0x62eb0d64283f9c76, -+ 0xc45d1df942711d9a, 0x3ba5d0bd324f8394, -+ 0xf5746577930d6500, 0xca8f44ec7ee36479, -+ 0x9968bf6abbe85f20, 0x7e998b13cf4e1ecb, -+ 0xbfc2ef456ae276e8, 0x9e3fedd8c321a67e, -+ 0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101e, -+ 0x95d04aee3b80ece5, 0xbba1f1d158724a12, -+ 0xbb445da9ca61281f, 0x2a8a6e45ae8edc97, -+ 0xea1575143cf97226, 0xf52d09d71a3293bd, -+ 0x924d692ca61be758, 0x593c2626705f9c56, -+ 0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836c, -+ 0xe498f455c38b997a, 0xb6dfb9c0f956447, -+ 0x8edf98b59a373fec, 0x4724bd4189bd5eac, -+ 0xb2977ee300c50fe7, 0x58edec91ec2cb657, -+ 0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ed, -+ 0x8b865b215899f46c, 0xbd79e0d20082ee74, -+ 0xae67f1e9aec07187, 0xecd8590680a3aa11, -+ 0xda01ee641a708de9, 0xe80e6f4820cc9495, -+ 0x884134fe908658b2, 0x3109058d147fdcdd, -+ 0xaa51823e34a7eede, 0xbd4b46f0599fd415, -+ 0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91a, -+ 0x850fadc09923329e, 0x3e2cf6bc604ddb0, -+ 0xa6539930bf6bff45, 0x84db8346b786151c, -+ 0xcfe87f7cef46ff16, 0xe612641865679a63, -+ 0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07e, -+ 0xa26da3999aef7749, 0xe3be5e330f38f09d, -+ 0xcb090c8001ab551c, 0x5cadf5bfd3072cc5, -+ 0xfdcb4fa002162a63, 0x73d9732fc7c8f7f6, -+ 0x9e9f11c4014dda7e, 0x2867e7fddcdd9afa, -+ 0xc646d63501a1511d, 0xb281e1fd541501b8, -+ 0xf7d88bc24209a565, 0x1f225a7ca91a4226, -+ 0x9ae757596946075f, 0x3375788de9b06958, -+ 0xc1a12d2fc3978937, 0x52d6b1641c83ae, -+ 0xf209787bb47d6b84, 0xc0678c5dbd23a49a, -+ 0x9745eb4d50ce6332, 0xf840b7ba963646e0, -+ 0xbd176620a501fbff, 0xb650e5a93bc3d898, -+ 0xec5d3fa8ce427aff, 0xa3e51f138ab4cebe, -+ 0x93ba47c980e98cdf, 0xc66f336c36b10137, -+ 0xb8a8d9bbe123f017, 0xb80b0047445d4184, -+ 0xe6d3102ad96cec1d, 0xa60dc059157491e5, -+ 0x9043ea1ac7e41392, 0x87c89837ad68db2f, -+ 0xb454e4a179dd1877, 0x29babe4598c311fb, -+ 0xe16a1dc9d8545e94, 0xf4296dd6fef3d67a, -+ 0x8ce2529e2734bb1d, 0x1899e4a65f58660c, -+ 0xb01ae745b101e9e4, 0x5ec05dcff72e7f8f, -+ 0xdc21a1171d42645d, 0x76707543f4fa1f73, -+ 0x899504ae72497eba, 0x6a06494a791c53a8, -+ 0xabfa45da0edbde69, 0x487db9d17636892, -+ 0xd6f8d7509292d603, 0x45a9d2845d3c42b6, -+ 0x865b86925b9bc5c2, 0xb8a2392ba45a9b2, -+ 0xa7f26836f282b732, 0x8e6cac7768d7141e, -+ 0xd1ef0244af2364ff, 0x3207d795430cd926, -+ 0x8335616aed761f1f, 0x7f44e6bd49e807b8, -+ 0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a6, -+ 0xcd036837130890a1, 0x36dba887c37a8c0f, -+ 0x802221226be55a64, 0xc2494954da2c9789, -+ 0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6c, -+ 0xc83553c5c8965d3d, 0x6f92829494e5acc7, -+ 0xfa42a8b73abbf48c, 0xcb772339ba1f17f9, -+ 0x9c69a97284b578d7, 0xff2a760414536efb, -+ 0xc38413cf25e2d70d, 0xfef5138519684aba, -+ 0xf46518c2ef5b8cd1, 0x7eb258665fc25d69, -+ 0x98bf2f79d5993802, 0xef2f773ffbd97a61, -+ 0xbeeefb584aff8603, 0xaafb550ffacfd8fa, -+ 0xeeaaba2e5dbf6784, 0x95ba2a53f983cf38, -+ 0x952ab45cfa97a0b2, 0xdd945a747bf26183, -+ 0xba756174393d88df, 0x94f971119aeef9e4, -+ 0xe912b9d1478ceb17, 0x7a37cd5601aab85d, -+ 0x91abb422ccb812ee, 0xac62e055c10ab33a, -+ 0xb616a12b7fe617aa, 0x577b986b314d6009, -+ 0xe39c49765fdf9d94, 0xed5a7e85fda0b80b, -+ 0x8e41ade9fbebc27d, 0x14588f13be847307, -+ 0xb1d219647ae6b31c, 0x596eb2d8ae258fc8, -+ 0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bb, -+ 0x8aec23d680043bee, 0x25de7bb9480d5854, -+ 0xada72ccc20054ae9, 0xaf561aa79a10ae6a, -+ 0xd910f7ff28069da4, 0x1b2ba1518094da04, -+ 0x87aa9aff79042286, 0x90fb44d2f05d0842, -+ 0xa99541bf57452b28, 0x353a1607ac744a53, -+ 0xd3fa922f2d1675f2, 0x42889b8997915ce8, -+ 0x847c9b5d7c2e09b7, 0x69956135febada11, -+ 0xa59bc234db398c25, 0x43fab9837e699095, -+ 0xcf02b2c21207ef2e, 0x94f967e45e03f4bb, -+ 0x8161afb94b44f57d, 0x1d1be0eebac278f5, -+ 0xa1ba1ba79e1632dc, 0x6462d92a69731732, -+ 0xca28a291859bbf93, 0x7d7b8f7503cfdcfe, -+ 0xfcb2cb35e702af78, 0x5cda735244c3d43e, -+ 0x9defbf01b061adab, 0x3a0888136afa64a7, -+ 0xc56baec21c7a1916, 0x88aaa1845b8fdd0, -+ 0xf6c69a72a3989f5b, 0x8aad549e57273d45, -+ 0x9a3c2087a63f6399, 0x36ac54e2f678864b, -+ 0xc0cb28a98fcf3c7f, 0x84576a1bb416a7dd, -+ 0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d5, -+ 0x969eb7c47859e743, 0x9f644ae5a4b1b325, -+ 0xbc4665b596706114, 0x873d5d9f0dde1fee, -+ 0xeb57ff22fc0c7959, 0xa90cb506d155a7ea, -+ 0x9316ff75dd87cbd8, 0x9a7f12442d588f2, -+ 0xb7dcbf5354e9bece, 0xc11ed6d538aeb2f, -+ 0xe5d3ef282a242e81, 0x8f1668c8a86da5fa, -+ 0x8fa475791a569d10, 0xf96e017d694487bc, -+ 0xb38d92d760ec4455, 0x37c981dcc395a9ac, -+ 0xe070f78d3927556a, 0x85bbe253f47b1417, -+ 0x8c469ab843b89562, 0x93956d7478ccec8e, -+ 0xaf58416654a6babb, 0x387ac8d1970027b2, -+ 0xdb2e51bfe9d0696a, 0x6997b05fcc0319e, -+ 0x88fcf317f22241e2, 0x441fece3bdf81f03, -+ 0xab3c2fddeeaad25a, 0xd527e81cad7626c3, -+ 0xd60b3bd56a5586f1, 0x8a71e223d8d3b074, -+ 0x85c7056562757456, 0xf6872d5667844e49, -+ 0xa738c6bebb12d16c, 0xb428f8ac016561db, -+ 0xd106f86e69d785c7, 0xe13336d701beba52, -+ 0x82a45b450226b39c, 0xecc0024661173473, -+ 0xa34d721642b06084, 0x27f002d7f95d0190, -+ 0xcc20ce9bd35c78a5, 0x31ec038df7b441f4, -+ 0xff290242c83396ce, 0x7e67047175a15271, -+ 0x9f79a169bd203e41, 0xf0062c6e984d386, -+ 0xc75809c42c684dd1, 0x52c07b78a3e60868, -+ 0xf92e0c3537826145, 0xa7709a56ccdf8a82, -+ 0x9bbcc7a142b17ccb, 0x88a66076400bb691, -+ 0xc2abf989935ddbfe, 0x6acff893d00ea435, -+ 0xf356f7ebf83552fe, 0x583f6b8c4124d43, -+ 0x98165af37b2153de, 0xc3727a337a8b704a, -+ 0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5c, -+ 0xeda2ee1c7064130c, 0x1162def06f79df73, -+ 0x9485d4d1c63e8be7, 0x8addcb5645ac2ba8, -+ 0xb9a74a0637ce2ee1, 0x6d953e2bd7173692, -+ 0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0437, -+ 0x910ab1d4db9914a0, 0x1d9c9892400a22a2, -+ 0xb54d5e4a127f59c8, 0x2503beb6d00cab4b, -+ 0xe2a0b5dc971f303a, 0x2e44ae64840fd61d, -+ 0x8da471a9de737e24, 0x5ceaecfed289e5d2, -+ 0xb10d8e1456105dad, 0x7425a83e872c5f47, -+ 0xdd50f1996b947518, 0xd12f124e28f77719, -+ 0x8a5296ffe33cc92f, 0x82bd6b70d99aaa6f, -+ 0xace73cbfdc0bfb7b, 0x636cc64d1001550b, -+ 0xd8210befd30efa5a, 0x3c47f7e05401aa4e, -+ 0x8714a775e3e95c78, 0x65acfaec34810a71, -+ 0xa8d9d1535ce3b396, 0x7f1839a741a14d0d, -+ 0xd31045a8341ca07c, 0x1ede48111209a050, -+ 0x83ea2b892091e44d, 0x934aed0aab460432, -+ 0xa4e4b66b68b65d60, 0xf81da84d5617853f, -+ 0xce1de40642e3f4b9, 0x36251260ab9d668e, -+ 0x80d2ae83e9ce78f3, 0xc1d72b7c6b426019, -+ 0xa1075a24e4421730, 0xb24cf65b8612f81f, -+ 0xc94930ae1d529cfc, 0xdee033f26797b627, -+ 0xfb9b7cd9a4a7443c, 0x169840ef017da3b1, -+ 0x9d412e0806e88aa5, 0x8e1f289560ee864e, -+ 0xc491798a08a2ad4e, 0xf1a6f2bab92a27e2, -+ 0xf5b5d7ec8acb58a2, 0xae10af696774b1db, -+ 0x9991a6f3d6bf1765, 0xacca6da1e0a8ef29, -+ 0xbff610b0cc6edd3f, 0x17fd090a58d32af3, -+ 0xeff394dcff8a948e, 0xddfc4b4cef07f5b0, -+ 0x95f83d0a1fb69cd9, 0x4abdaf101564f98e, -+ 0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f1, -+ 0xea53df5fd18d5513, 0x84c86189216dc5ed, -+ 0x92746b9be2f8552c, 0x32fd3cf5b4e49bb4, -+ 0xb7118682dbb66a77, 0x3fbc8c33221dc2a1, -+ 0xe4d5e82392a40515, 0xfabaf3feaa5334a, -+ 0x8f05b1163ba6832d, 0x29cb4d87f2a7400e, -+ 0xb2c71d5bca9023f8, 0x743e20e9ef511012, -+ 0xdf78e4b2bd342cf6, 0x914da9246b255416, -+ 0x8bab8eefb6409c1a, 0x1ad089b6c2f7548e, -+ 0xae9672aba3d0c320, 0xa184ac2473b529b1, -+ 0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741e, -+ 0x8865899617fb1871, 0x7e2fa67c7a658892, -+ 0xaa7eebfb9df9de8d, 0xddbb901b98feeab7, -+ 0xd51ea6fa85785631, 0x552a74227f3ea565, -+ 0x8533285c936b35de, 0xd53a88958f87275f, -+ 0xa67ff273b8460356, 0x8a892abaf368f137, -+ 0xd01fef10a657842c, 0x2d2b7569b0432d85, -+ 0x8213f56a67f6b29b, 0x9c3b29620e29fc73, -+ 0xa298f2c501f45f42, 0x8349f3ba91b47b8f, -+ 0xcb3f2f7642717713, 0x241c70a936219a73, -+ 0xfe0efb53d30dd4d7, 0xed238cd383aa0110, -+ 0x9ec95d1463e8a506, 0xf4363804324a40aa, -+ 0xc67bb4597ce2ce48, 0xb143c6053edcd0d5, -+ 0xf81aa16fdc1b81da, 0xdd94b7868e94050a, -+ 0x9b10a4e5e9913128, 0xca7cf2b4191c8326, -+ 0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f0, -+ 0xf24a01a73cf2dccf, 0xbc633b39673c8cec, -+ 0x976e41088617ca01, 0xd5be0503e085d813, -+ 0xbd49d14aa79dbc82, 0x4b2d8644d8a74e18, -+ 0xec9c459d51852ba2, 0xddf8e7d60ed1219e, -+ 0x93e1ab8252f33b45, 0xcabb90e5c942b503, -+ 0xb8da1662e7b00a17, 0x3d6a751f3b936243, -+ 0xe7109bfba19c0c9d, 0xcc512670a783ad4, -+ 0x906a617d450187e2, 0x27fb2b80668b24c5, -+ 0xb484f9dc9641e9da, 0xb1f9f660802dedf6, -+ 0xe1a63853bbd26451, 0x5e7873f8a0396973, -+ 0x8d07e33455637eb2, 0xdb0b487b6423e1e8, -+ 0xb049dc016abc5e5f, 0x91ce1a9a3d2cda62, -+ 0xdc5c5301c56b75f7, 0x7641a140cc7810fb, -+ 0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9d, -+ 0xac2820d9623bf429, 0x546345fa9fbdcd44, -+ 0xd732290fbacaf133, 0xa97c177947ad4095, -+ 0x867f59a9d4bed6c0, 0x49ed8eabcccc485d, -+ 0xa81f301449ee8c70, 0x5c68f256bfff5a74, -+ 0xd226fc195c6a2f8c, 0x73832eec6fff3111, -+ 0x83585d8fd9c25db7, 0xc831fd53c5ff7eab, -+ 0xa42e74f3d032f525, 0xba3e7ca8b77f5e55, -+ 0xcd3a1230c43fb26f, 0x28ce1bd2e55f35eb, -+ 0x80444b5e7aa7cf85, 0x7980d163cf5b81b3, -+ 0xa0555e361951c366, 0xd7e105bcc332621f, -+ 0xc86ab5c39fa63440, 0x8dd9472bf3fefaa7, -+ 0xfa856334878fc150, 0xb14f98f6f0feb951, -+ 0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d3, -+ 0xc3b8358109e84f07, 0xa862f80ec4700c8, -+ 0xf4a642e14c6262c8, 0xcd27bb612758c0fa, -+ 0x98e7e9cccfbd7dbd, 0x8038d51cb897789c, -+ 0xbf21e44003acdd2c, 0xe0470a63e6bd56c3, -+ 0xeeea5d5004981478, 0x1858ccfce06cac74, -+ 0x95527a5202df0ccb, 0xf37801e0c43ebc8, -+ 0xbaa718e68396cffd, 0xd30560258f54e6ba, -+ 0xe950df20247c83fd, 0x47c6b82ef32a2069, -+ 0x91d28b7416cdd27e, 0x4cdc331d57fa5441, -+ 0xb6472e511c81471d, 0xe0133fe4adf8e952, -+ 0xe3d8f9e563a198e5, 0x58180fddd97723a6, -+ 0x8e679c2f5e44ff8f, 0x570f09eaa7ea7648, -+ }; -+}; -+ -+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE -+ -+template <class unused> -+constexpr uint64_t -+ powers_template<unused>::power_of_five_128[number_of_entries]; -+ -+#endif -+ -+using powers = powers_template<>; -+ -+} // namespace fast_float -+ -+#endif -+ -+#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H -+#define FASTFLOAT_DECIMAL_TO_BINARY_H -+ -+#include <cfloat> -+#include <cinttypes> -+#include <cmath> -+#include <cstdint> -+#include <cstdlib> -+#include <cstring> -+ -+namespace fast_float { -+ -+// This will compute or rather approximate w * 5**q and return a pair of 64-bit -+// words approximating the result, with the "high" part corresponding to the -+// most significant bits and the low part corresponding to the least significant -+// bits. -+// -+template <int bit_precision> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128 -+compute_product_approximation(int64_t q, uint64_t w) { -+ const int index = 2 * int(q - powers::smallest_power_of_five); -+ // For small values of q, e.g., q in [0,27], the answer is always exact -+ // because The line value128 firstproduct = full_multiplication(w, -+ // power_of_five_128[index]); gives the exact answer. -+ value128 firstproduct = -+ full_multiplication(w, powers::power_of_five_128[index]); -+ static_assert((bit_precision >= 0) && (bit_precision <= 64), -+ " precision should be in (0,64]"); -+ constexpr uint64_t precision_mask = -+ (bit_precision < 64) ? (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision) -+ : uint64_t(0xFFFFFFFFFFFFFFFF); -+ if ((firstproduct.high & precision_mask) == -+ precision_mask) { // could further guard with (lower + w < lower) -+ // regarding the second product, we only need secondproduct.high, but our -+ // expectation is that the compiler will optimize this extra work away if -+ // needed. -+ value128 secondproduct = -+ full_multiplication(w, powers::power_of_five_128[index + 1]); -+ firstproduct.low += secondproduct.high; -+ if (secondproduct.high > firstproduct.low) { -+ firstproduct.high++; -+ } -+ } -+ return firstproduct; -+} -+ -+namespace detail { -+/** -+ * For q in (0,350), we have that -+ * f = (((152170 + 65536) * q ) >> 16); -+ * is equal to -+ * floor(p) + q -+ * where -+ * p = log(5**q)/log(2) = q * log(5)/log(2) -+ * -+ * For negative values of q in (-400,0), we have that -+ * f = (((152170 + 65536) * q ) >> 16); -+ * is equal to -+ * -ceil(p) + q -+ * where -+ * p = log(5**-q)/log(2) = -q * log(5)/log(2) -+ */ -+constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept { -+ return (((152170 + 65536) * q) >> 16) + 63; -+} -+} // namespace detail -+ -+// create an adjusted mantissa, biased by the invalid power2 -+// for significant digits already multiplied by 10 ** q. -+template <typename binary> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 adjusted_mantissa -+compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept { -+ int hilz = int(w >> 63) ^ 1; -+ adjusted_mantissa answer; -+ answer.mantissa = w << hilz; -+ int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent(); -+ answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 + -+ invalid_am_bias); -+ return answer; -+} -+ -+// w * 10 ** q, without rounding the representation up. -+// the power2 in the exponent will be adjusted by invalid_am_bias. -+template <typename binary> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa -+compute_error(int64_t q, uint64_t w) noexcept { -+ int lz = leading_zeroes(w); -+ w <<= lz; -+ value128 product = -+ compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w); -+ return compute_error_scaled<binary>(q, product.high, lz); -+} -+ -+// w * 10 ** q -+// The returned value should be a valid ieee64 number that simply need to be -+// packed. However, in some very rare cases, the computation will fail. In such -+// cases, we return an adjusted_mantissa with a negative power of 2: the caller -+// should recompute in such cases. -+template <typename binary> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa -+compute_float(int64_t q, uint64_t w) noexcept { -+ adjusted_mantissa answer; -+ if ((w == 0) || (q < binary::smallest_power_of_ten())) { -+ answer.power2 = 0; -+ answer.mantissa = 0; -+ // result should be zero -+ return answer; -+ } -+ if (q > binary::largest_power_of_ten()) { -+ // we want to get infinity: -+ answer.power2 = binary::infinite_power(); -+ answer.mantissa = 0; -+ return answer; -+ } -+ // At this point in time q is in [powers::smallest_power_of_five, -+ // powers::largest_power_of_five]. -+ -+ // We want the most significant bit of i to be 1. Shift if needed. -+ int lz = leading_zeroes(w); -+ w <<= lz; -+ -+ // The required precision is binary::mantissa_explicit_bits() + 3 because -+ // 1. We need the implicit bit -+ // 2. We need an extra bit for rounding purposes -+ // 3. We might lose a bit due to the "upperbit" routine (result too small, -+ // requiring a shift) -+ -+ value128 product = -+ compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w); -+ // The computed 'product' is always sufficient. -+ // Mathematical proof: -+ // Noble Mushtak and Daniel Lemire, Fast Number Parsing Without Fallback (to -+ // appear) See script/mushtak_lemire.py -+ -+ // The "compute_product_approximation" function can be slightly slower than a -+ // branchless approach: value128 product = compute_product(q, w); but in -+ // practice, we can win big with the compute_product_approximation if its -+ // additional branch is easily predicted. Which is best is data specific. -+ int upperbit = int(product.high >> 63); -+ int shift = upperbit + 64 - binary::mantissa_explicit_bits() - 3; -+ -+ answer.mantissa = product.high >> shift; -+ -+ answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz - -+ binary::minimum_exponent()); -+ if (answer.power2 <= 0) { // we have a subnormal? -+ // Here have that answer.power2 <= 0 so -answer.power2 >= 0 -+ if (-answer.power2 + 1 >= -+ 64) { // if we have more than 64 bits below the minimum exponent, you -+ // have a zero for sure. -+ answer.power2 = 0; -+ answer.mantissa = 0; -+ // result should be zero -+ return answer; -+ } -+ // next line is safe because -answer.power2 + 1 < 64 -+ answer.mantissa >>= -answer.power2 + 1; -+ // Thankfully, we can't have both "round-to-even" and subnormals because -+ // "round-to-even" only occurs for powers close to 0. -+ answer.mantissa += (answer.mantissa & 1); // round up -+ answer.mantissa >>= 1; -+ // There is a weird scenario where we don't have a subnormal but just. -+ // Suppose we start with 2.2250738585072013e-308, we end up -+ // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal -+ // whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round -+ // up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer -+ // subnormal, but we can only know this after rounding. -+ // So we only declare a subnormal if we are smaller than the threshold. -+ answer.power2 = -+ (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) -+ ? 0 -+ : 1; -+ return answer; -+ } -+ -+ // usually, we round *up*, but if we fall right in between and and we have an -+ // even basis, we need to round down -+ // We are only concerned with the cases where 5**q fits in single 64-bit word. -+ if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) && -+ (q <= binary::max_exponent_round_to_even()) && -+ ((answer.mantissa & 3) == 1)) { // we may fall between two floats! -+ // To be in-between two floats we need that in doing -+ // answer.mantissa = product.high >> (upperbit + 64 - -+ // binary::mantissa_explicit_bits() - 3); -+ // ... we dropped out only zeroes. But if this happened, then we can go -+ // back!!! -+ if ((answer.mantissa << shift) == product.high) { -+ answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up -+ } -+ } -+ -+ answer.mantissa += (answer.mantissa & 1); // round up -+ answer.mantissa >>= 1; -+ if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) { -+ answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits()); -+ answer.power2++; // undo previous addition -+ } -+ -+ answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits()); -+ if (answer.power2 >= binary::infinite_power()) { // infinity -+ answer.power2 = binary::infinite_power(); -+ answer.mantissa = 0; -+ } -+ return answer; -+} -+ -+} // namespace fast_float -+ -+#endif -+ -+#ifndef FASTFLOAT_BIGINT_H -+#define FASTFLOAT_BIGINT_H -+ -+#include <algorithm> -+#include <cstdint> -+#include <climits> -+#include <cstring> -+ -+ -+namespace fast_float { -+ -+// the limb width: we want efficient multiplication of double the bits in -+// limb, or for 64-bit limbs, at least 64-bit multiplication where we can -+// extract the high and low parts efficiently. this is every 64-bit -+// architecture except for sparc, which emulates 128-bit multiplication. -+// we might have platforms where `CHAR_BIT` is not 8, so let's avoid -+// doing `8 * sizeof(limb)`. -+#if defined(FASTFLOAT_64BIT) && !defined(__sparc) -+#define FASTFLOAT_64BIT_LIMB 1 -+typedef uint64_t limb; -+constexpr size_t limb_bits = 64; -+#else -+#define FASTFLOAT_32BIT_LIMB -+typedef uint32_t limb; -+constexpr size_t limb_bits = 32; -+#endif -+ -+typedef span<limb> limb_span; -+ -+// number of bits in a bigint. this needs to be at least the number -+// of bits required to store the largest bigint, which is -+// `log2(10**(digits + max_exp))`, or `log2(10**(767 + 342))`, or -+// ~3600 bits, so we round to 4000. -+constexpr size_t bigint_bits = 4000; -+constexpr size_t bigint_limbs = bigint_bits / limb_bits; -+ -+// vector-like type that is allocated on the stack. the entire -+// buffer is pre-allocated, and only the length changes. -+template <uint16_t size> struct stackvec { -+ limb data[size]; -+ // we never need more than 150 limbs -+ uint16_t length{0}; -+ -+ stackvec() = default; -+ stackvec(const stackvec &) = delete; -+ stackvec &operator=(const stackvec &) = delete; -+ stackvec(stackvec &&) = delete; -+ stackvec &operator=(stackvec &&other) = delete; -+ -+ // create stack vector from existing limb span. -+ FASTFLOAT_CONSTEXPR20 stackvec(limb_span s) { -+ FASTFLOAT_ASSERT(try_extend(s)); -+ } -+ -+ FASTFLOAT_CONSTEXPR14 limb &operator[](size_t index) noexcept { -+ FASTFLOAT_DEBUG_ASSERT(index < length); -+ return data[index]; -+ } -+ FASTFLOAT_CONSTEXPR14 const limb &operator[](size_t index) const noexcept { -+ FASTFLOAT_DEBUG_ASSERT(index < length); -+ return data[index]; -+ } -+ // index from the end of the container -+ FASTFLOAT_CONSTEXPR14 const limb &rindex(size_t index) const noexcept { -+ FASTFLOAT_DEBUG_ASSERT(index < length); -+ size_t rindex = length - index - 1; -+ return data[rindex]; -+ } -+ -+ // set the length, without bounds checking. -+ FASTFLOAT_CONSTEXPR14 void set_len(size_t len) noexcept { -+ length = uint16_t(len); -+ } -+ constexpr size_t len() const noexcept { return length; } -+ constexpr bool is_empty() const noexcept { return length == 0; } -+ constexpr size_t capacity() const noexcept { return size; } -+ // append item to vector, without bounds checking -+ FASTFLOAT_CONSTEXPR14 void push_unchecked(limb value) noexcept { -+ data[length] = value; -+ length++; -+ } -+ // append item to vector, returning if item was added -+ FASTFLOAT_CONSTEXPR14 bool try_push(limb value) noexcept { -+ if (len() < capacity()) { -+ push_unchecked(value); -+ return true; -+ } else { -+ return false; -+ } -+ } -+ // add items to the vector, from a span, without bounds checking -+ FASTFLOAT_CONSTEXPR20 void extend_unchecked(limb_span s) noexcept { -+ limb *ptr = data + length; -+ std::copy_n(s.ptr, s.len(), ptr); -+ set_len(len() + s.len()); -+ } -+ // try to add items to the vector, returning if items were added -+ FASTFLOAT_CONSTEXPR20 bool try_extend(limb_span s) noexcept { -+ if (len() + s.len() <= capacity()) { -+ extend_unchecked(s); -+ return true; -+ } else { -+ return false; -+ } -+ } -+ // resize the vector, without bounds checking -+ // if the new size is longer than the vector, assign value to each -+ // appended item. -+ FASTFLOAT_CONSTEXPR20 -+ void resize_unchecked(size_t new_len, limb value) noexcept { -+ if (new_len > len()) { -+ size_t count = new_len - len(); -+ limb *first = data + len(); -+ limb *last = first + count; -+ ::std::fill(first, last, value); -+ set_len(new_len); -+ } else { -+ set_len(new_len); -+ } -+ } -+ // try to resize the vector, returning if the vector was resized. -+ FASTFLOAT_CONSTEXPR20 bool try_resize(size_t new_len, limb value) noexcept { -+ if (new_len > capacity()) { -+ return false; -+ } else { -+ resize_unchecked(new_len, value); -+ return true; -+ } -+ } -+ // check if any limbs are non-zero after the given index. -+ // this needs to be done in reverse order, since the index -+ // is relative to the most significant limbs. -+ FASTFLOAT_CONSTEXPR14 bool nonzero(size_t index) const noexcept { -+ while (index < len()) { -+ if (rindex(index) != 0) { -+ return true; -+ } -+ index++; -+ } -+ return false; -+ } -+ // normalize the big integer, so most-significant zero limbs are removed. -+ FASTFLOAT_CONSTEXPR14 void normalize() noexcept { -+ while (len() > 0 && rindex(0) == 0) { -+ length--; -+ } -+ } -+}; -+ -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t -+empty_hi64(bool &truncated) noexcept { -+ truncated = false; -+ return 0; -+} -+ -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t -+uint64_hi64(uint64_t r0, bool &truncated) noexcept { -+ truncated = false; -+ int shl = leading_zeroes(r0); -+ return r0 << shl; -+} -+ -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t -+uint64_hi64(uint64_t r0, uint64_t r1, bool &truncated) noexcept { -+ int shl = leading_zeroes(r0); -+ if (shl == 0) { -+ truncated = r1 != 0; -+ return r0; -+ } else { -+ int shr = 64 - shl; -+ truncated = (r1 << shl) != 0; -+ return (r0 << shl) | (r1 >> shr); -+ } -+} -+ -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t -+uint32_hi64(uint32_t r0, bool &truncated) noexcept { -+ return uint64_hi64(r0, truncated); -+} -+ -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t -+uint32_hi64(uint32_t r0, uint32_t r1, bool &truncated) noexcept { -+ uint64_t x0 = r0; -+ uint64_t x1 = r1; -+ return uint64_hi64((x0 << 32) | x1, truncated); -+} -+ -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t -+uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool &truncated) noexcept { -+ uint64_t x0 = r0; -+ uint64_t x1 = r1; -+ uint64_t x2 = r2; -+ return uint64_hi64(x0, (x1 << 32) | x2, truncated); -+} -+ -+// add two small integers, checking for overflow. -+// we want an efficient operation. for msvc, where -+// we don't have built-in intrinsics, this is still -+// pretty fast. -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb -+scalar_add(limb x, limb y, bool &overflow) noexcept { -+ limb z; -+// gcc and clang -+#if defined(__has_builtin) -+#if __has_builtin(__builtin_add_overflow) -+ if (!cpp20_and_in_constexpr()) { -+ overflow = __builtin_add_overflow(x, y, &z); -+ return z; -+ } -+#endif -+#endif -+ -+ // generic, this still optimizes correctly on MSVC. -+ z = x + y; -+ overflow = z < x; -+ return z; -+} -+ -+// multiply two small integers, getting both the high and low bits. -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb -+scalar_mul(limb x, limb y, limb &carry) noexcept { -+#ifdef FASTFLOAT_64BIT_LIMB -+#if defined(__SIZEOF_INT128__) -+ // GCC and clang both define it as an extension. -+ __uint128_t z = __uint128_t(x) * __uint128_t(y) + __uint128_t(carry); -+ carry = limb(z >> limb_bits); -+ return limb(z); -+#else -+ // fallback, no native 128-bit integer multiplication with carry. -+ // on msvc, this optimizes identically, somehow. -+ value128 z = full_multiplication(x, y); -+ bool overflow; -+ z.low = scalar_add(z.low, carry, overflow); -+ z.high += uint64_t(overflow); // cannot overflow -+ carry = z.high; -+ return z.low; -+#endif -+#else -+ uint64_t z = uint64_t(x) * uint64_t(y) + uint64_t(carry); -+ carry = limb(z >> limb_bits); -+ return limb(z); -+#endif -+} -+ -+// add scalar value to bigint starting from offset. -+// used in grade school multiplication -+template <uint16_t size> -+inline FASTFLOAT_CONSTEXPR20 bool small_add_from(stackvec<size> &vec, limb y, -+ size_t start) noexcept { -+ size_t index = start; -+ limb carry = y; -+ bool overflow; -+ while (carry != 0 && index < vec.len()) { -+ vec[index] = scalar_add(vec[index], carry, overflow); -+ carry = limb(overflow); -+ index += 1; -+ } -+ if (carry != 0) { -+ FASTFLOAT_TRY(vec.try_push(carry)); -+ } -+ return true; -+} -+ -+// add scalar value to bigint. -+template <uint16_t size> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool -+small_add(stackvec<size> &vec, limb y) noexcept { -+ return small_add_from(vec, y, 0); -+} -+ -+// multiply bigint by scalar value. -+template <uint16_t size> -+inline FASTFLOAT_CONSTEXPR20 bool small_mul(stackvec<size> &vec, -+ limb y) noexcept { -+ limb carry = 0; -+ for (size_t index = 0; index < vec.len(); index++) { -+ vec[index] = scalar_mul(vec[index], y, carry); -+ } -+ if (carry != 0) { -+ FASTFLOAT_TRY(vec.try_push(carry)); -+ } -+ return true; -+} -+ -+// add bigint to bigint starting from index. -+// used in grade school multiplication -+template <uint16_t size> -+FASTFLOAT_CONSTEXPR20 bool large_add_from(stackvec<size> &x, limb_span y, -+ size_t start) noexcept { -+ // the effective x buffer is from `xstart..x.len()`, so exit early -+ // if we can't get that current range. -+ if (x.len() < start || y.len() > x.len() - start) { -+ FASTFLOAT_TRY(x.try_resize(y.len() + start, 0)); -+ } -+ -+ bool carry = false; -+ for (size_t index = 0; index < y.len(); index++) { -+ limb xi = x[index + start]; -+ limb yi = y[index]; -+ bool c1 = false; -+ bool c2 = false; -+ xi = scalar_add(xi, yi, c1); -+ if (carry) { -+ xi = scalar_add(xi, 1, c2); -+ } -+ x[index + start] = xi; -+ carry = c1 | c2; -+ } -+ -+ // handle overflow -+ if (carry) { -+ FASTFLOAT_TRY(small_add_from(x, 1, y.len() + start)); -+ } -+ return true; -+} -+ -+// add bigint to bigint. -+template <uint16_t size> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool -+large_add_from(stackvec<size> &x, limb_span y) noexcept { -+ return large_add_from(x, y, 0); -+} -+ -+// grade-school multiplication algorithm -+template <uint16_t size> -+FASTFLOAT_CONSTEXPR20 bool long_mul(stackvec<size> &x, limb_span y) noexcept { -+ limb_span xs = limb_span(x.data, x.len()); -+ stackvec<size> z(xs); -+ limb_span zs = limb_span(z.data, z.len()); -+ -+ if (y.len() != 0) { -+ limb y0 = y[0]; -+ FASTFLOAT_TRY(small_mul(x, y0)); -+ for (size_t index = 1; index < y.len(); index++) { -+ limb yi = y[index]; -+ stackvec<size> zi; -+ if (yi != 0) { -+ // re-use the same buffer throughout -+ zi.set_len(0); -+ FASTFLOAT_TRY(zi.try_extend(zs)); -+ FASTFLOAT_TRY(small_mul(zi, yi)); -+ limb_span zis = limb_span(zi.data, zi.len()); -+ FASTFLOAT_TRY(large_add_from(x, zis, index)); -+ } -+ } -+ } -+ -+ x.normalize(); -+ return true; -+} -+ -+// grade-school multiplication algorithm -+template <uint16_t size> -+FASTFLOAT_CONSTEXPR20 bool large_mul(stackvec<size> &x, limb_span y) noexcept { -+ if (y.len() == 1) { -+ FASTFLOAT_TRY(small_mul(x, y[0])); -+ } else { -+ FASTFLOAT_TRY(long_mul(x, y)); -+ } -+ return true; -+} -+ -+template <typename = void> struct pow5_tables { -+ static constexpr uint32_t large_step = 135; -+ static constexpr uint64_t small_power_of_5[] = { -+ 1UL, -+ 5UL, -+ 25UL, -+ 125UL, -+ 625UL, -+ 3125UL, -+ 15625UL, -+ 78125UL, -+ 390625UL, -+ 1953125UL, -+ 9765625UL, -+ 48828125UL, -+ 244140625UL, -+ 1220703125UL, -+ 6103515625UL, -+ 30517578125UL, -+ 152587890625UL, -+ 762939453125UL, -+ 3814697265625UL, -+ 19073486328125UL, -+ 95367431640625UL, -+ 476837158203125UL, -+ 2384185791015625UL, -+ 11920928955078125UL, -+ 59604644775390625UL, -+ 298023223876953125UL, -+ 1490116119384765625UL, -+ 7450580596923828125UL, -+ }; -+#ifdef FASTFLOAT_64BIT_LIMB -+ constexpr static limb large_power_of_5[] = { -+ 1414648277510068013UL, 9180637584431281687UL, 4539964771860779200UL, -+ 10482974169319127550UL, 198276706040285095UL}; -+#else -+ constexpr static limb large_power_of_5[] = { -+ 4279965485U, 329373468U, 4020270615U, 2137533757U, 4287402176U, -+ 1057042919U, 1071430142U, 2440757623U, 381945767U, 46164893U}; -+#endif -+}; -+ -+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE -+ -+template <typename T> constexpr uint32_t pow5_tables<T>::large_step; -+ -+template <typename T> constexpr uint64_t pow5_tables<T>::small_power_of_5[]; -+ -+template <typename T> constexpr limb pow5_tables<T>::large_power_of_5[]; -+ -+#endif -+ -+// big integer type. implements a small subset of big integer -+// arithmetic, using simple algorithms since asymptotically -+// faster algorithms are slower for a small number of limbs. -+// all operations assume the big-integer is normalized. -+struct bigint : pow5_tables<> { -+ // storage of the limbs, in little-endian order. -+ stackvec<bigint_limbs> vec; -+ -+ FASTFLOAT_CONSTEXPR20 bigint() : vec() {} -+ bigint(const bigint &) = delete; -+ bigint &operator=(const bigint &) = delete; -+ bigint(bigint &&) = delete; -+ bigint &operator=(bigint &&other) = delete; -+ -+ FASTFLOAT_CONSTEXPR20 bigint(uint64_t value) : vec() { -+#ifdef FASTFLOAT_64BIT_LIMB -+ vec.push_unchecked(value); -+#else -+ vec.push_unchecked(uint32_t(value)); -+ vec.push_unchecked(uint32_t(value >> 32)); -+#endif -+ vec.normalize(); -+ } -+ -+ // get the high 64 bits from the vector, and if bits were truncated. -+ // this is to get the significant digits for the float. -+ FASTFLOAT_CONSTEXPR20 uint64_t hi64(bool &truncated) const noexcept { -+#ifdef FASTFLOAT_64BIT_LIMB -+ if (vec.len() == 0) { -+ return empty_hi64(truncated); -+ } else if (vec.len() == 1) { -+ return uint64_hi64(vec.rindex(0), truncated); -+ } else { -+ uint64_t result = uint64_hi64(vec.rindex(0), vec.rindex(1), truncated); -+ truncated |= vec.nonzero(2); -+ return result; -+ } -+#else -+ if (vec.len() == 0) { -+ return empty_hi64(truncated); -+ } else if (vec.len() == 1) { -+ return uint32_hi64(vec.rindex(0), truncated); -+ } else if (vec.len() == 2) { -+ return uint32_hi64(vec.rindex(0), vec.rindex(1), truncated); -+ } else { -+ uint64_t result = -+ uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), truncated); -+ truncated |= vec.nonzero(3); -+ return result; -+ } -+#endif -+ } -+ -+ // compare two big integers, returning the large value. -+ // assumes both are normalized. if the return value is -+ // negative, other is larger, if the return value is -+ // positive, this is larger, otherwise they are equal. -+ // the limbs are stored in little-endian order, so we -+ // must compare the limbs in ever order. -+ FASTFLOAT_CONSTEXPR20 int compare(const bigint &other) const noexcept { -+ if (vec.len() > other.vec.len()) { -+ return 1; -+ } else if (vec.len() < other.vec.len()) { -+ return -1; -+ } else { -+ for (size_t index = vec.len(); index > 0; index--) { -+ limb xi = vec[index - 1]; -+ limb yi = other.vec[index - 1]; -+ if (xi > yi) { -+ return 1; -+ } else if (xi < yi) { -+ return -1; -+ } -+ } -+ return 0; -+ } -+ } -+ -+ // shift left each limb n bits, carrying over to the new limb -+ // returns true if we were able to shift all the digits. -+ FASTFLOAT_CONSTEXPR20 bool shl_bits(size_t n) noexcept { -+ // Internally, for each item, we shift left by n, and add the previous -+ // right shifted limb-bits. -+ // For example, we transform (for u8) shifted left 2, to: -+ // b10100100 b01000010 -+ // b10 b10010001 b00001000 -+ FASTFLOAT_DEBUG_ASSERT(n != 0); -+ FASTFLOAT_DEBUG_ASSERT(n < sizeof(limb) * 8); -+ -+ size_t shl = n; -+ size_t shr = limb_bits - shl; -+ limb prev = 0; -+ for (size_t index = 0; index < vec.len(); index++) { -+ limb xi = vec[index]; -+ vec[index] = (xi << shl) | (prev >> shr); -+ prev = xi; -+ } -+ -+ limb carry = prev >> shr; -+ if (carry != 0) { -+ return vec.try_push(carry); -+ } -+ return true; -+ } -+ -+ // move the limbs left by `n` limbs. -+ FASTFLOAT_CONSTEXPR20 bool shl_limbs(size_t n) noexcept { -+ FASTFLOAT_DEBUG_ASSERT(n != 0); -+ if (n + vec.len() > vec.capacity()) { -+ return false; -+ } else if (!vec.is_empty()) { -+ // move limbs -+ limb *dst = vec.data + n; -+ const limb *src = vec.data; -+ std::copy_backward(src, src + vec.len(), dst + vec.len()); -+ // fill in empty limbs -+ limb *first = vec.data; -+ limb *last = first + n; -+ ::std::fill(first, last, 0); -+ vec.set_len(n + vec.len()); -+ return true; -+ } else { -+ return true; -+ } -+ } -+ -+ // move the limbs left by `n` bits. -+ FASTFLOAT_CONSTEXPR20 bool shl(size_t n) noexcept { -+ size_t rem = n % limb_bits; -+ size_t div = n / limb_bits; -+ if (rem != 0) { -+ FASTFLOAT_TRY(shl_bits(rem)); -+ } -+ if (div != 0) { -+ FASTFLOAT_TRY(shl_limbs(div)); -+ } -+ return true; -+ } -+ -+ // get the number of leading zeros in the bigint. -+ FASTFLOAT_CONSTEXPR20 int ctlz() const noexcept { -+ if (vec.is_empty()) { -+ return 0; -+ } else { -+#ifdef FASTFLOAT_64BIT_LIMB -+ return leading_zeroes(vec.rindex(0)); -+#else -+ // no use defining a specialized leading_zeroes for a 32-bit type. -+ uint64_t r0 = vec.rindex(0); -+ return leading_zeroes(r0 << 32); -+#endif -+ } -+ } -+ -+ // get the number of bits in the bigint. -+ FASTFLOAT_CONSTEXPR20 int bit_length() const noexcept { -+ int lz = ctlz(); -+ return int(limb_bits * vec.len()) - lz; -+ } -+ -+ FASTFLOAT_CONSTEXPR20 bool mul(limb y) noexcept { return small_mul(vec, y); } -+ -+ FASTFLOAT_CONSTEXPR20 bool add(limb y) noexcept { return small_add(vec, y); } -+ -+ // multiply as if by 2 raised to a power. -+ FASTFLOAT_CONSTEXPR20 bool pow2(uint32_t exp) noexcept { return shl(exp); } -+ -+ // multiply as if by 5 raised to a power. -+ FASTFLOAT_CONSTEXPR20 bool pow5(uint32_t exp) noexcept { -+ // multiply by a power of 5 -+ size_t large_length = sizeof(large_power_of_5) / sizeof(limb); -+ limb_span large = limb_span(large_power_of_5, large_length); -+ while (exp >= large_step) { -+ FASTFLOAT_TRY(large_mul(vec, large)); -+ exp -= large_step; -+ } -+#ifdef FASTFLOAT_64BIT_LIMB -+ uint32_t small_step = 27; -+ limb max_native = 7450580596923828125UL; -+#else -+ uint32_t small_step = 13; -+ limb max_native = 1220703125U; -+#endif -+ while (exp >= small_step) { -+ FASTFLOAT_TRY(small_mul(vec, max_native)); -+ exp -= small_step; -+ } -+ if (exp != 0) { -+ // Work around clang bug https://godbolt.org/z/zedh7rrhc -+ // This is similar to https://github.com/llvm/llvm-project/issues/47746, -+ // except the workaround described there don't work here -+ FASTFLOAT_TRY(small_mul( -+ vec, limb(((void)small_power_of_5[0], small_power_of_5[exp])))); -+ } -+ -+ return true; -+ } -+ -+ // multiply as if by 10 raised to a power. -+ FASTFLOAT_CONSTEXPR20 bool pow10(uint32_t exp) noexcept { -+ FASTFLOAT_TRY(pow5(exp)); -+ return pow2(exp); -+ } -+}; -+ -+} // namespace fast_float -+ -+#endif -+ -+#ifndef FASTFLOAT_DIGIT_COMPARISON_H -+#define FASTFLOAT_DIGIT_COMPARISON_H -+ -+#include <algorithm> -+#include <cstdint> -+#include <cstring> -+#include <iterator> -+ -+ -+namespace fast_float { -+ -+// 1e0 to 1e19 -+constexpr static uint64_t powers_of_ten_uint64[] = {1UL, -+ 10UL, -+ 100UL, -+ 1000UL, -+ 10000UL, -+ 100000UL, -+ 1000000UL, -+ 10000000UL, -+ 100000000UL, -+ 1000000000UL, -+ 10000000000UL, -+ 100000000000UL, -+ 1000000000000UL, -+ 10000000000000UL, -+ 100000000000000UL, -+ 1000000000000000UL, -+ 10000000000000000UL, -+ 100000000000000000UL, -+ 1000000000000000000UL, -+ 10000000000000000000UL}; -+ -+// calculate the exponent, in scientific notation, of the number. -+// this algorithm is not even close to optimized, but it has no practical -+// effect on performance: in order to have a faster algorithm, we'd need -+// to slow down performance for faster algorithms, and this is still fast. -+template <typename UC> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int32_t -+scientific_exponent(parsed_number_string_t<UC> &num) noexcept { -+ uint64_t mantissa = num.mantissa; -+ int32_t exponent = int32_t(num.exponent); -+ while (mantissa >= 10000) { -+ mantissa /= 10000; -+ exponent += 4; -+ } -+ while (mantissa >= 100) { -+ mantissa /= 100; -+ exponent += 2; -+ } -+ while (mantissa >= 10) { -+ mantissa /= 10; -+ exponent += 1; -+ } -+ return exponent; -+} -+ -+// this converts a native floating-point number to an extended-precision float. -+template <typename T> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa -+to_extended(T value) noexcept { -+ using equiv_uint = typename binary_format<T>::equiv_uint; -+ constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask(); -+ constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask(); -+ constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask(); -+ -+ adjusted_mantissa am; -+ int32_t bias = binary_format<T>::mantissa_explicit_bits() - -+ binary_format<T>::minimum_exponent(); -+ equiv_uint bits; -+#if FASTFLOAT_HAS_BIT_CAST -+ bits = std::bit_cast<equiv_uint>(value); -+#else -+ ::memcpy(&bits, &value, sizeof(T)); -+#endif -+ if ((bits & exponent_mask) == 0) { -+ // denormal -+ am.power2 = 1 - bias; -+ am.mantissa = bits & mantissa_mask; -+ } else { -+ // normal -+ am.power2 = int32_t((bits & exponent_mask) >> -+ binary_format<T>::mantissa_explicit_bits()); -+ am.power2 -= bias; -+ am.mantissa = (bits & mantissa_mask) | hidden_bit_mask; -+ } -+ -+ return am; -+} -+ -+// get the extended precision value of the halfway point between b and b+u. -+// we are given a native float that represents b, so we need to adjust it -+// halfway between b and b+u. -+template <typename T> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa -+to_extended_halfway(T value) noexcept { -+ adjusted_mantissa am = to_extended(value); -+ am.mantissa <<= 1; -+ am.mantissa += 1; -+ am.power2 -= 1; -+ return am; -+} -+ -+// round an extended-precision float to the nearest machine float. -+template <typename T, typename callback> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void round(adjusted_mantissa &am, -+ callback cb) noexcept { -+ int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1; -+ if (-am.power2 >= mantissa_shift) { -+ // have a denormal float -+ int32_t shift = -am.power2 + 1; -+ cb(am, std::min<int32_t>(shift, 64)); -+ // check for round-up: if rounding-nearest carried us to the hidden bit. -+ am.power2 = (am.mantissa < -+ (uint64_t(1) << binary_format<T>::mantissa_explicit_bits())) -+ ? 0 -+ : 1; -+ return; -+ } -+ -+ // have a normal float, use the default shift. -+ cb(am, mantissa_shift); -+ -+ // check for carry -+ if (am.mantissa >= -+ (uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) { -+ am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits()); -+ am.power2++; -+ } -+ -+ // check for infinite: we could have carried to an infinite power -+ am.mantissa &= ~(uint64_t(1) << binary_format<T>::mantissa_explicit_bits()); -+ if (am.power2 >= binary_format<T>::infinite_power()) { -+ am.power2 = binary_format<T>::infinite_power(); -+ am.mantissa = 0; -+ } -+} -+ -+template <typename callback> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void -+round_nearest_tie_even(adjusted_mantissa &am, int32_t shift, -+ callback cb) noexcept { -+ const uint64_t mask = (shift == 64) ? UINT64_MAX : (uint64_t(1) << shift) - 1; -+ const uint64_t halfway = (shift == 0) ? 0 : uint64_t(1) << (shift - 1); -+ uint64_t truncated_bits = am.mantissa & mask; -+ bool is_above = truncated_bits > halfway; -+ bool is_halfway = truncated_bits == halfway; -+ -+ // shift digits into position -+ if (shift == 64) { -+ am.mantissa = 0; -+ } else { -+ am.mantissa >>= shift; -+ } -+ am.power2 += shift; -+ -+ bool is_odd = (am.mantissa & 1) == 1; -+ am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above)); -+} -+ -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void -+round_down(adjusted_mantissa &am, int32_t shift) noexcept { -+ if (shift == 64) { -+ am.mantissa = 0; -+ } else { -+ am.mantissa >>= shift; -+ } -+ am.power2 += shift; -+} -+template <typename UC> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void -+skip_zeros(UC const *&first, UC const *last) noexcept { -+ uint64_t val; -+ while (!cpp20_and_in_constexpr() && -+ std::distance(first, last) >= int_cmp_len<UC>()) { -+ ::memcpy(&val, first, sizeof(uint64_t)); -+ if (val != int_cmp_zeros<UC>()) { -+ break; -+ } -+ first += int_cmp_len<UC>(); -+ } -+ while (first != last) { -+ if (*first != UC('0')) { -+ break; -+ } -+ first++; -+ } -+} -+ -+// determine if any non-zero digits were truncated. -+// all characters must be valid digits. -+template <typename UC> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool -+is_truncated(UC const *first, UC const *last) noexcept { -+ // do 8-bit optimizations, can just compare to 8 literal 0s. -+ uint64_t val; -+ while (!cpp20_and_in_constexpr() && -+ std::distance(first, last) >= int_cmp_len<UC>()) { -+ ::memcpy(&val, first, sizeof(uint64_t)); -+ if (val != int_cmp_zeros<UC>()) { -+ return true; -+ } -+ first += int_cmp_len<UC>(); -+ } -+ while (first != last) { -+ if (*first != UC('0')) { -+ return true; -+ } -+ ++first; -+ } -+ return false; -+} -+template <typename UC> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool -+is_truncated(span<const UC> s) noexcept { -+ return is_truncated(s.ptr, s.ptr + s.len()); -+} -+ -+template <typename UC> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void -+parse_eight_digits(const UC *&p, limb &value, size_t &counter, -+ size_t &count) noexcept { -+ value = value * 100000000 + parse_eight_digits_unrolled(p); -+ p += 8; -+ counter += 8; -+ count += 8; -+} -+ -+template <typename UC> -+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void -+parse_one_digit(UC const *&p, limb &value, size_t &counter, -+ size_t &count) noexcept { -+ value = value * 10 + limb(*p - UC('0')); -+ p++; -+ counter++; -+ count++; -+} -+ -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void -+add_native(bigint &big, limb power, limb value) noexcept { -+ big.mul(power); -+ big.add(value); -+} -+ -+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void -+round_up_bigint(bigint &big, size_t &count) noexcept { -+ // need to round-up the digits, but need to avoid rounding -+ // ....9999 to ...10000, which could cause a false halfway point. -+ add_native(big, 10, 1); -+ count++; -+} -+ -+// parse the significant digits into a big integer -+template <typename UC> -+inline FASTFLOAT_CONSTEXPR20 void -+parse_mantissa(bigint &result, parsed_number_string_t<UC> &num, -+ size_t max_digits, size_t &digits) noexcept { -+ // try to minimize the number of big integer and scalar multiplication. -+ // therefore, try to parse 8 digits at a time, and multiply by the largest -+ // scalar value (9 or 19 digits) for each step. -+ size_t counter = 0; -+ digits = 0; -+ limb value = 0; -+#ifdef FASTFLOAT_64BIT_LIMB -+ size_t step = 19; -+#else -+ size_t step = 9; -+#endif -+ -+ // process all integer digits. -+ UC const *p = num.integer.ptr; -+ UC const *pend = p + num.integer.len(); -+ skip_zeros(p, pend); -+ // process all digits, in increments of step per loop -+ while (p != pend) { -+ while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && -+ (max_digits - digits >= 8)) { -+ parse_eight_digits(p, value, counter, digits); -+ } -+ while (counter < step && p != pend && digits < max_digits) { -+ parse_one_digit(p, value, counter, digits); -+ } -+ if (digits == max_digits) { -+ // add the temporary value, then check if we've truncated any digits -+ add_native(result, limb(powers_of_ten_uint64[counter]), value); -+ bool truncated = is_truncated(p, pend); -+ if (num.fraction.ptr != nullptr) { -+ truncated |= is_truncated(num.fraction); -+ } -+ if (truncated) { -+ round_up_bigint(result, digits); -+ } -+ return; -+ } else { -+ add_native(result, limb(powers_of_ten_uint64[counter]), value); -+ counter = 0; -+ value = 0; -+ } -+ } -+ -+ // add our fraction digits, if they're available. -+ if (num.fraction.ptr != nullptr) { -+ p = num.fraction.ptr; -+ pend = p + num.fraction.len(); -+ if (digits == 0) { -+ skip_zeros(p, pend); -+ } -+ // process all digits, in increments of step per loop -+ while (p != pend) { -+ while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && -+ (max_digits - digits >= 8)) { -+ parse_eight_digits(p, value, counter, digits); -+ } -+ while (counter < step && p != pend && digits < max_digits) { -+ parse_one_digit(p, value, counter, digits); -+ } -+ if (digits == max_digits) { -+ // add the temporary value, then check if we've truncated any digits -+ add_native(result, limb(powers_of_ten_uint64[counter]), value); -+ bool truncated = is_truncated(p, pend); -+ if (truncated) { -+ round_up_bigint(result, digits); -+ } -+ return; -+ } else { -+ add_native(result, limb(powers_of_ten_uint64[counter]), value); -+ counter = 0; -+ value = 0; -+ } -+ } -+ } -+ -+ if (counter != 0) { -+ add_native(result, limb(powers_of_ten_uint64[counter]), value); -+ } -+} -+ -+template <typename T> -+inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa -+positive_digit_comp(bigint &bigmant, int32_t exponent) noexcept { -+ FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent))); -+ adjusted_mantissa answer; -+ bool truncated; -+ answer.mantissa = bigmant.hi64(truncated); -+ int bias = binary_format<T>::mantissa_explicit_bits() - -+ binary_format<T>::minimum_exponent(); -+ answer.power2 = bigmant.bit_length() - 64 + bias; -+ -+ round<T>(answer, [truncated](adjusted_mantissa &a, int32_t shift) { -+ round_nearest_tie_even( -+ a, shift, -+ [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool { -+ return is_above || (is_halfway && truncated) || -+ (is_odd && is_halfway); -+ }); -+ }); -+ -+ return answer; -+} -+ -+// the scaling here is quite simple: we have, for the real digits `m * 10^e`, -+// and for the theoretical digits `n * 2^f`. Since `e` is always negative, -+// to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`. -+// we then need to scale by `2^(f- e)`, and then the two significant digits -+// are of the same magnitude. -+template <typename T> -+inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa negative_digit_comp( -+ bigint &bigmant, adjusted_mantissa am, int32_t exponent) noexcept { -+ bigint &real_digits = bigmant; -+ int32_t real_exp = exponent; -+ -+ // get the value of `b`, rounded down, and get a bigint representation of b+h -+ adjusted_mantissa am_b = am; -+ // gcc7 buf: use a lambda to remove the noexcept qualifier bug with -+ // -Wnoexcept-type. -+ round<T>(am_b, -+ [](adjusted_mantissa &a, int32_t shift) { round_down(a, shift); }); -+ T b; -+ to_float(false, am_b, b); -+ adjusted_mantissa theor = to_extended_halfway(b); -+ bigint theor_digits(theor.mantissa); -+ int32_t theor_exp = theor.power2; -+ -+ // scale real digits and theor digits to be same power. -+ int32_t pow2_exp = theor_exp - real_exp; -+ uint32_t pow5_exp = uint32_t(-real_exp); -+ if (pow5_exp != 0) { -+ FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp)); -+ } -+ if (pow2_exp > 0) { -+ FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp))); -+ } else if (pow2_exp < 0) { -+ FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp))); -+ } -+ -+ // compare digits, and use it to director rounding -+ int ord = real_digits.compare(theor_digits); -+ adjusted_mantissa answer = am; -+ round<T>(answer, [ord](adjusted_mantissa &a, int32_t shift) { -+ round_nearest_tie_even( -+ a, shift, [ord](bool is_odd, bool _, bool __) -> bool { -+ (void)_; // not needed, since we've done our comparison -+ (void)__; // not needed, since we've done our comparison -+ if (ord > 0) { -+ return true; -+ } else if (ord < 0) { -+ return false; -+ } else { -+ return is_odd; -+ } -+ }); -+ }); -+ -+ return answer; -+} -+ -+// parse the significant digits as a big integer to unambiguously round the -+// the significant digits. here, we are trying to determine how to round -+// an extended float representation close to `b+h`, halfway between `b` -+// (the float rounded-down) and `b+u`, the next positive float. this -+// algorithm is always correct, and uses one of two approaches. when -+// the exponent is positive relative to the significant digits (such as -+// 1234), we create a big-integer representation, get the high 64-bits, -+// determine if any lower bits are truncated, and use that to direct -+// rounding. in case of a negative exponent relative to the significant -+// digits (such as 1.2345), we create a theoretical representation of -+// `b` as a big-integer type, scaled to the same binary exponent as -+// the actual digits. we then compare the big integer representations -+// of both, and use that to direct rounding. -+template <typename T, typename UC> -+inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa -+digit_comp(parsed_number_string_t<UC> &num, adjusted_mantissa am) noexcept { -+ // remove the invalid exponent bias -+ am.power2 -= invalid_am_bias; -+ -+ int32_t sci_exp = scientific_exponent(num); -+ size_t max_digits = binary_format<T>::max_digits(); -+ size_t digits = 0; -+ bigint bigmant; -+ parse_mantissa(bigmant, num, max_digits, digits); -+ // can't underflow, since digits is at most max_digits. -+ int32_t exponent = sci_exp + 1 - int32_t(digits); -+ if (exponent >= 0) { -+ return positive_digit_comp<T>(bigmant, exponent); -+ } else { -+ return negative_digit_comp<T>(bigmant, am, exponent); -+ } -+} -+ -+} // namespace fast_float -+ -+#endif -+ -+#ifndef FASTFLOAT_PARSE_NUMBER_H -+#define FASTFLOAT_PARSE_NUMBER_H -+ -+ -+#include <cmath> -+#include <cstring> -+#include <limits> -+#include <system_error> -+namespace fast_float { -+ -+namespace detail { -+/** -+ * Special case +inf, -inf, nan, infinity, -infinity. -+ * The case comparisons could be made much faster given that we know that the -+ * strings a null-free and fixed. -+ **/ -+template <typename T, typename UC> -+from_chars_result_t<UC> FASTFLOAT_CONSTEXPR14 parse_infnan(UC const *first, -+ UC const *last, -+ T &value) noexcept { -+ from_chars_result_t<UC> answer{}; -+ answer.ptr = first; -+ answer.ec = std::errc(); // be optimistic -+ bool minusSign = false; -+ if (*first == -+ UC('-')) { // assume first < last, so dereference without checks; -+ // C++17 20.19.3.(7.1) explicitly forbids '+' here -+ minusSign = true; -+ ++first; -+ } -+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default -+ if (*first == UC('+')) { -+ ++first; -+ } -+#endif -+ if (last - first >= 3) { -+ if (fastfloat_strncasecmp(first, str_const_nan<UC>(), 3)) { -+ answer.ptr = (first += 3); -+ value = minusSign ? -std::numeric_limits<T>::quiet_NaN() -+ : std::numeric_limits<T>::quiet_NaN(); -+ // Check for possible nan(n-char-seq-opt), C++17 20.19.3.7, -+ // C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan). -+ if (first != last && *first == UC('(')) { -+ for (UC const *ptr = first + 1; ptr != last; ++ptr) { -+ if (*ptr == UC(')')) { -+ answer.ptr = ptr + 1; // valid nan(n-char-seq-opt) -+ break; -+ } else if (!((UC('a') <= *ptr && *ptr <= UC('z')) || -+ (UC('A') <= *ptr && *ptr <= UC('Z')) || -+ (UC('0') <= *ptr && *ptr <= UC('9')) || *ptr == UC('_'))) -+ break; // forbidden char, not nan(n-char-seq-opt) -+ } -+ } -+ return answer; -+ } -+ if (fastfloat_strncasecmp(first, str_const_inf<UC>(), 3)) { -+ if ((last - first >= 8) && -+ fastfloat_strncasecmp(first + 3, str_const_inf<UC>() + 3, 5)) { -+ answer.ptr = first + 8; -+ } else { -+ answer.ptr = first + 3; -+ } -+ value = minusSign ? -std::numeric_limits<T>::infinity() -+ : std::numeric_limits<T>::infinity(); -+ return answer; -+ } -+ } -+ answer.ec = std::errc::invalid_argument; -+ return answer; -+} -+ -+/** -+ * Returns true if the floating-pointing rounding mode is to 'nearest'. -+ * It is the default on most system. This function is meant to be inexpensive. -+ * Credit : @mwalcott3 -+ */ -+fastfloat_really_inline bool rounds_to_nearest() noexcept { -+ // https://lemire.me/blog/2020/06/26/gcc-not-nearest/ -+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) -+ return false; -+#endif -+ // See -+ // A fast function to check your floating-point rounding mode -+ // https://lemire.me/blog/2022/11/16/a-fast-function-to-check-your-floating-point-rounding-mode/ -+ // -+ // This function is meant to be equivalent to : -+ // prior: #include <cfenv> -+ // return fegetround() == FE_TONEAREST; -+ // However, it is expected to be much faster than the fegetround() -+ // function call. -+ // -+ // The volatile keywoard prevents the compiler from computing the function -+ // at compile-time. -+ // There might be other ways to prevent compile-time optimizations (e.g., -+ // asm). The value does not need to be std::numeric_limits<float>::min(), any -+ // small value so that 1 + x should round to 1 would do (after accounting for -+ // excess precision, as in 387 instructions). -+ static volatile float fmin = std::numeric_limits<float>::min(); -+ float fmini = fmin; // we copy it so that it gets loaded at most once. -+// -+// Explanation: -+// Only when fegetround() == FE_TONEAREST do we have that -+// fmin + 1.0f == 1.0f - fmin. -+// -+// FE_UPWARD: -+// fmin + 1.0f > 1 -+// 1.0f - fmin == 1 -+// -+// FE_DOWNWARD or FE_TOWARDZERO: -+// fmin + 1.0f == 1 -+// 1.0f - fmin < 1 -+// -+// Note: This may fail to be accurate if fast-math has been -+// enabled, as rounding conventions may not apply. -+#ifdef FASTFLOAT_VISUAL_STUDIO -+#pragma warning(push) -+// todo: is there a VS warning? -+// see -+// https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013 -+#elif defined(__clang__) -+#pragma clang diagnostic push -+#pragma clang diagnostic ignored "-Wfloat-equal" -+#elif defined(__GNUC__) -+#pragma GCC diagnostic push -+#pragma GCC diagnostic ignored "-Wfloat-equal" -+#endif -+ return (fmini + 1.0f == 1.0f - fmini); -+#ifdef FASTFLOAT_VISUAL_STUDIO -+#pragma warning(pop) -+#elif defined(__clang__) -+#pragma clang diagnostic pop -+#elif defined(__GNUC__) -+#pragma GCC diagnostic pop -+#endif -+} -+ -+} // namespace detail -+ -+template <typename T> struct from_chars_caller { -+ template <typename UC> -+ FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC> -+ call(UC const *first, UC const *last, T &value, -+ parse_options_t<UC> options) noexcept { -+ return from_chars_advanced(first, last, value, options); -+ } -+}; -+ -+#if __STDCPP_FLOAT32_T__ == 1 -+template <> struct from_chars_caller<std::float32_t> { -+ template <typename UC> -+ FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC> -+ call(UC const *first, UC const *last, std::float32_t &value, -+ parse_options_t<UC> options) noexcept { -+ // if std::float32_t is defined, and we are in C++23 mode; macro set for -+ // float32; set value to float due to equivalence between float and -+ // float32_t -+ float val; -+ auto ret = from_chars_advanced(first, last, val, options); -+ value = val; -+ return ret; -+ } -+}; -+#endif -+ -+#if __STDCPP_FLOAT64_T__ == 1 -+template <> struct from_chars_caller<std::float64_t> { -+ template <typename UC> -+ FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC> -+ call(UC const *first, UC const *last, std::float64_t &value, -+ parse_options_t<UC> options) noexcept { -+ // if std::float64_t is defined, and we are in C++23 mode; macro set for -+ // float64; set value as double due to equivalence between double and -+ // float64_t -+ double val; -+ auto ret = from_chars_advanced(first, last, val, options); -+ value = val; -+ return ret; -+ } -+}; -+#endif -+ -+template <typename T, typename UC, typename> -+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> -+from_chars(UC const *first, UC const *last, T &value, -+ chars_format fmt /*= chars_format::general*/) noexcept { -+ return from_chars_caller<T>::call(first, last, value, -+ parse_options_t<UC>(fmt)); -+} -+ -+/** -+ * This function overload takes parsed_number_string_t structure that is created -+ * and populated either by from_chars_advanced function taking chars range and -+ * parsing options or other parsing custom function implemented by user. -+ */ -+template <typename T, typename UC> -+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> -+from_chars_advanced(parsed_number_string_t<UC> &pns, T &value) noexcept { -+ -+ static_assert(is_supported_float_type<T>(), -+ "only some floating-point types are supported"); -+ static_assert(is_supported_char_type<UC>(), -+ "only char, wchar_t, char16_t and char32_t are supported"); -+ -+ from_chars_result_t<UC> answer; -+ -+ answer.ec = std::errc(); // be optimistic -+ answer.ptr = pns.lastmatch; -+ // The implementation of the Clinger's fast path is convoluted because -+ // we want round-to-nearest in all cases, irrespective of the rounding mode -+ // selected on the thread. -+ // We proceed optimistically, assuming that detail::rounds_to_nearest() -+ // returns true. -+ if (binary_format<T>::min_exponent_fast_path() <= pns.exponent && -+ pns.exponent <= binary_format<T>::max_exponent_fast_path() && -+ !pns.too_many_digits) { -+ // Unfortunately, the conventional Clinger's fast path is only possible -+ // when the system rounds to the nearest float. -+ // -+ // We expect the next branch to almost always be selected. -+ // We could check it first (before the previous branch), but -+ // there might be performance advantages at having the check -+ // be last. -+ if (!cpp20_and_in_constexpr() && detail::rounds_to_nearest()) { -+ // We have that fegetround() == FE_TONEAREST. -+ // Next is Clinger's fast path. -+ if (pns.mantissa <= binary_format<T>::max_mantissa_fast_path()) { -+ value = T(pns.mantissa); -+ if (pns.exponent < 0) { -+ value = value / binary_format<T>::exact_power_of_ten(-pns.exponent); -+ } else { -+ value = value * binary_format<T>::exact_power_of_ten(pns.exponent); -+ } -+ if (pns.negative) { -+ value = -value; -+ } -+ return answer; -+ } -+ } else { -+ // We do not have that fegetround() == FE_TONEAREST. -+ // Next is a modified Clinger's fast path, inspired by Jakub Jelínek's -+ // proposal -+ if (pns.exponent >= 0 && -+ pns.mantissa <= -+ binary_format<T>::max_mantissa_fast_path(pns.exponent)) { -+#if defined(__clang__) || defined(FASTFLOAT_32BIT) -+ // Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD -+ if (pns.mantissa == 0) { -+ value = pns.negative ? T(-0.) : T(0.); -+ return answer; -+ } -+#endif -+ value = T(pns.mantissa) * -+ binary_format<T>::exact_power_of_ten(pns.exponent); -+ if (pns.negative) { -+ value = -value; -+ } -+ return answer; -+ } -+ } -+ } -+ adjusted_mantissa am = -+ compute_float<binary_format<T>>(pns.exponent, pns.mantissa); -+ if (pns.too_many_digits && am.power2 >= 0) { -+ if (am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) { -+ am = compute_error<binary_format<T>>(pns.exponent, pns.mantissa); -+ } -+ } -+ // If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa) -+ // and we have an invalid power (am.power2 < 0), then we need to go the long -+ // way around again. This is very uncommon. -+ if (am.power2 < 0) { -+ am = digit_comp<T>(pns, am); -+ } -+ to_float(pns.negative, am, value); -+ // Test for over/underflow. -+ if ((pns.mantissa != 0 && am.mantissa == 0 && am.power2 == 0) || -+ am.power2 == binary_format<T>::infinite_power()) { -+ answer.ec = std::errc::result_out_of_range; -+ } -+ return answer; -+} -+ -+template <typename T, typename UC> -+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> -+from_chars_advanced(UC const *first, UC const *last, T &value, -+ parse_options_t<UC> options) noexcept { -+ -+ static_assert(is_supported_float_type<T>(), -+ "only some floating-point types are supported"); -+ static_assert(is_supported_char_type<UC>(), -+ "only char, wchar_t, char16_t and char32_t are supported"); -+ -+ from_chars_result_t<UC> answer; -+#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default -+ while ((first != last) && fast_float::is_space(uint8_t(*first))) { -+ first++; -+ } -+#endif -+ if (first == last) { -+ answer.ec = std::errc::invalid_argument; -+ answer.ptr = first; -+ return answer; -+ } -+ parsed_number_string_t<UC> pns = -+ parse_number_string<UC>(first, last, options); -+ if (!pns.valid) { -+ if (options.format & chars_format::no_infnan) { -+ answer.ec = std::errc::invalid_argument; -+ answer.ptr = first; -+ return answer; -+ } else { -+ return detail::parse_infnan(first, last, value); -+ } -+ } -+ -+ // call overload that takes parsed_number_string_t directly. -+ return from_chars_advanced(pns, value); -+} -+ -+template <typename T, typename UC, typename> -+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> -+from_chars(UC const *first, UC const *last, T &value, int base) noexcept { -+ static_assert(is_supported_char_type<UC>(), -+ "only char, wchar_t, char16_t and char32_t are supported"); -+ -+ from_chars_result_t<UC> answer; -+#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default -+ while ((first != last) && fast_float::is_space(uint8_t(*first))) { -+ first++; -+ } -+#endif -+ if (first == last || base < 2 || base > 36) { -+ answer.ec = std::errc::invalid_argument; -+ answer.ptr = first; -+ return answer; -+ } -+ return parse_int_string(first, last, value, base); -+} -+ -+} // namespace fast_float -+ -+#endif -+ diff --git a/meta/recipes-support/vte/vte/0005-color-parser-Use-fast_float-implementation-for-from_.patch b/meta/recipes-support/vte/vte/0005-color-parser-Use-fast_float-implementation-for-from_.patch deleted file mode 100644 index b951bbac18..0000000000 --- a/meta/recipes-support/vte/vte/0005-color-parser-Use-fast_float-implementation-for-from_.patch +++ /dev/null @@ -1,102 +0,0 @@ -From 08b90d0a5bf8ceb68dd1b4e9ded0f8a2b5287a6e Mon Sep 17 00:00:00 2001 -From: Khem Raj <raj.khem@gmail.com> -Date: Fri, 4 Oct 2024 21:22:52 -0700 -Subject: [PATCH 5/5] color-parser: Use fast_float implementation for - from_chars - -Removed dependency on c++ runtime to provide it. - -Fixes: https://gitlab.gnome.org/GNOME/vte/-/issues/2823 - -Upstream-Status: Submitted [https://gitlab.gnome.org/GNOME/vte/-/issues/2823#note_2239888] -Signed-off-by: Khem Raj <raj.khem@gmail.com> ---- - src/color-parser.cc | 12 ++++++------ - src/termprops.hh | 12 ++++++------ - 2 files changed, 12 insertions(+), 12 deletions(-) - -diff --git a/src/color-parser.cc b/src/color-parser.cc -index 02ec5d3a..42c51966 100644 ---- a/src/color-parser.cc -+++ b/src/color-parser.cc -@@ -17,7 +17,7 @@ - - #include "color-parser.hh" - #include "color.hh" -- -+#include "fast_float.hh" - #include <algorithm> - #include <cctype> - #include <charconv> -@@ -298,7 +298,7 @@ parse_csslike(std::string const& spec) noexcept - auto value = uint64_t{}; - auto const start = spec.c_str() + 1; - auto const end = spec.c_str() + spec.size(); -- auto const rv = std::from_chars(start, end, value, 16); -+ auto const rv = fast_float::from_chars(start, end, value, 16); - if (rv.ec != std::errc{} || rv.ptr != end) - return std::nullopt; - -@@ -424,7 +424,7 @@ parse_x11like(std::string const& spec) noexcept - auto value = uint64_t{}; - auto const start = spec.c_str() + 1; - auto const end = spec.c_str() + spec.size(); -- auto const rv = std::from_chars(start, end, value, 16); -+ auto const rv = fast_float::from_chars(start, end, value, 16); - if (rv.ec != std::errc{} || rv.ptr != end) - return std::nullopt; - -@@ -447,13 +447,13 @@ parse_x11like(std::string const& spec) noexcept - // Note that the length check above makes sure that @r, @g, @b, - // don't exceed @bits. - auto r = UINT64_C(0), b = UINT64_C(0), g = UINT64_C(0); -- auto rv = std::from_chars(start, end, r, 16); -+ auto rv = fast_float::from_chars(start, end, r, 16); - if (rv.ec != std::errc{} || rv.ptr == end || *rv.ptr != '/') - return std::nullopt; -- rv = std::from_chars(rv.ptr + 1, end, g, 16); -+ rv = fast_float::from_chars(rv.ptr + 1, end, g, 16); - if (rv.ec != std::errc{} || rv.ptr == end || *rv.ptr != '/') - return std::nullopt; -- rv = std::from_chars(rv.ptr + 1, end, b, 16); -+ rv = fast_float::from_chars(rv.ptr + 1, end, b, 16); - if (rv.ec != std::errc{} || rv.ptr != end) - return std::nullopt; - -diff --git a/src/termprops.hh b/src/termprops.hh -index 0d3f0f4c..a10fc7d1 100644 ---- a/src/termprops.hh -+++ b/src/termprops.hh -@@ -17,6 +17,7 @@ - - #include <glib.h> - -+#include "fast_float.hh" - #include "fwd.hh" - #include "uuid.hh" - #include "color.hh" -@@ -355,8 +356,8 @@ inline std::optional<TermpropValue> - parse_termprop_integral(std::string_view const& str) noexcept - { - auto v = T{}; -- if (auto [ptr, err] = std::from_chars(std::begin(str), -- std::end(str), -+ if (auto [ptr, err] = fast_float::from_chars(str.data(), -+ str.data()+str.size(), - v); - err == std::errc() && ptr == std::end(str)) { - if constexpr (std::is_unsigned_v<T>) { -@@ -389,10 +390,9 @@ inline std::optional<TermpropValue> - parse_termprop_floating(std::string_view const& str) noexcept - { - auto v = T{}; -- if (auto [ptr, err] = std::from_chars(std::begin(str), -- std::end(str), -- v, -- std::chars_format::general); -+ if (auto [ptr, err] = fast_float::from_chars(str.data(), -+ str.data() + str.size(), -+ v); - err == std::errc() && - ptr == std::end(str) && - std::isfinite(v)) { diff --git a/meta/recipes-support/vte/vte_0.78.2.bb b/meta/recipes-support/vte/vte_0.80.3.bb similarity index 82% rename from meta/recipes-support/vte/vte_0.78.2.bb rename to meta/recipes-support/vte/vte_0.80.3.bb index 0593d16cd8..1eb95dd827 100644 --- a/meta/recipes-support/vte/vte_0.78.2.bb +++ b/meta/recipes-support/vte/vte_0.80.3.bb @@ -11,18 +11,15 @@ LIC_FILES_CHKSUM = " \ file://COPYING.XTERM;md5=d7fc3a23c16c039afafe2e042030f057 \ " -DEPENDS = "glib-2.0 glib-2.0-native gtk+3 libpcre2 libxml2-native gperf-native icu lz4" +DEPENDS = "fastfloat glib-2.0 glib-2.0-native gtk+3 libpcre2 libxml2-native gperf-native icu lz4" GIR_MESON_OPTION = 'gir' GIDOCGEN_MESON_OPTION = "docs" inherit gnomebase gi-docgen features_check upstream-version-is-even gobject-introspection systemd vala -SRC_URI += "file://0001-Add-W_EXITCODE-macro-for-non-glibc-systems.patch \ - file://0002-lib-Typo-fix.patch \ - file://0004-fast_float-Add-single-header-library-for-from_char-i.patch \ - file://0005-color-parser-Use-fast_float-implementation-for-from_.patch \ - " -SRC_URI[archive.sha256sum] = "35d7bcde07356846b4a12881c8e016705b70a9004a9082285eee5834ccc49890" +SRC_URI += "file://0001-Add-W_EXITCODE-macro-for-non-glibc-systems.patch" + +SRC_URI[archive.sha256sum] = "2e596fd3fbeabb71531662224e71f6a2c37f684426136d62854627276ef4f699" ANY_OF_DISTRO_FEATURES = "${GTK3DISTROFEATURES}" @@ -49,7 +46,8 @@ FILES:${PN}-gtk4-dev = "${libdir}/lib*gtk4.so \ ${datadir}/vala/vapi/vte-2.91-gtk4.vapi \ ${includedir}/vte-2.91-gtk4 \ " -FILES:${PN} += "${systemd_user_unitdir}" +FILES:${PN} += "${systemd_user_unitdir} \ + ${datadir}/xdg-terminals" FILES:libvte = "${libdir}/*.so.* ${libdir}/girepository-1.0/*" FILES:${PN}-prompt = " \ ${sysconfdir}/profile.d \