From patchwork Sat Oct 5 05:57:53 2024 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 8bit X-Patchwork-Submitter: Khem Raj X-Patchwork-Id: 49964 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org Received: from aws-us-west-2-korg-lkml-1.web.codeaurora.org (localhost.localdomain [127.0.0.1]) by smtp.lore.kernel.org (Postfix) with ESMTP id DB4E7CF8869 for ; Sat, 5 Oct 2024 05:58:05 +0000 (UTC) Received: from mail-pl1-f172.google.com (mail-pl1-f172.google.com [209.85.214.172]) by mx.groups.io with SMTP id smtpd.web11.6661.1728107882359620810 for ; Fri, 04 Oct 2024 22:58:02 -0700 Authentication-Results: mx.groups.io; dkim=pass header.i=@gmail.com header.s=20230601 header.b=Ld4b7Gbu; spf=pass (domain: gmail.com, ip: 209.85.214.172, mailfrom: raj.khem@gmail.com) Received: by mail-pl1-f172.google.com with SMTP id d9443c01a7336-20b4a0940e3so26488475ad.0 for ; Fri, 04 Oct 2024 22:58:02 -0700 (PDT) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20230601; t=1728107881; x=1728712681; darn=lists.openembedded.org; h=content-transfer-encoding:mime-version:message-id:date:subject:cc :to:from:from:to:cc:subject:date:message-id:reply-to; bh=w1b0XNK2lmEVLnLe/3aMm7ICBoztDXxOWHdn3Fge03E=; b=Ld4b7GbuXDFj69oys3l3ugxv+n1EdeFnOxTmHpcXQdHGeZB59Eh8RdXAXk81P2WKhX 2fq0WhG2yGXPHAPQK0hFG3C8MbWypRQCDm/gpoX/IaGuuX0jHx2Xfns2yjaPVeW/xmCu FPNnxzWuTd3NNxzcGiM50gDSWs7DSuK1POvFVSriIrxs4hz+okeDh9NuFa0038/hWGat ijUkZQTAwBmusmUDpxYz/ltWQ7Emql31Sz+851GAa7VlSaWD5RQC5QueSBEIszM/9Rph FoqrXcN6deO6QNA1a6cG/jPzxYuUJRLgydr59QxttSRdp37BKNIjjhanu29SgKRipyfL 6Z7g== X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20230601; t=1728107881; x=1728712681; h=content-transfer-encoding:mime-version:message-id:date:subject:cc :to:from:x-gm-message-state:from:to:cc:subject:date:message-id :reply-to; bh=w1b0XNK2lmEVLnLe/3aMm7ICBoztDXxOWHdn3Fge03E=; b=mXoMPzZNFN4Umez41dmgDhmLvIG/ZiIB4wXdrgM1OqYgWSJz330WB6pz2iLNQ0owwS xSKfglrGOJRWMRFgykDVbzyKT+Of9z/WPyx+Dq+5KkogV8LmLL2wihvk9ONISf6vXQO6 gG45a23ixhNcyqgjJw8AUBROM4SuBxH1JTzgZAzc32QPy1KD7yGSXrslN62t7TCxC0sx 01gH4bUR8sC9nyC13lbS1MLudTOgd+BmOgBMvMpUFfYv/F9MIsuaW2Y8ZykjK+X4vAGt Z+YjM6PKKGYJ1vRP9OG7CxgA/iuXXhw1fY8e3DdhjYWU1/0NKIObjt2OgklXi6E1jR0L nohA== X-Gm-Message-State: AOJu0YxFq+0+yRRSi2FBk5c3XCrNLCBDchKB5S7Z7a9EuS3z2zhTpazy CB3h9LgWEHY+7TBCDgLZyZ0MyHTuoOR+0TjRp/PhKzA2Sji3azlquFu0odRz X-Google-Smtp-Source: AGHT+IH0W6JaeAluQGNh6ki6HDzgG/ldJrXfFo0ShU7ay04bzahttiIORI4UEJUDMOclv1OB7fOC5Q== X-Received: by 2002:a17:903:18d:b0:20b:7f94:9d42 with SMTP id d9443c01a7336-20bfdfafd27mr94273955ad.13.1728107879566; Fri, 04 Oct 2024 22:57:59 -0700 (PDT) Received: from apollo.hsd1.ca.comcast.net ([2601:646:9d80:4380::6d1b]) by smtp.gmail.com with ESMTPSA id 41be03b00d2f7-7e9f6c35e92sm974346a12.70.2024.10.04.22.57.57 (version=TLS1_3 cipher=TLS_AES_256_GCM_SHA384 bits=256/256); Fri, 04 Oct 2024 22:57:58 -0700 (PDT) From: Khem Raj To: openembedded-core@lists.openembedded.org Cc: Ross Burton , Khem Raj Subject: [PATCH v2] vte: Upgrade to 0.78.0 Date: Fri, 4 Oct 2024 22:57:53 -0700 Message-ID: <20241005055754.2950605-1-raj.khem@gmail.com> X-Mailer: git-send-email 2.46.2 MIME-Version: 1.0 List-Id: X-Webhook-Received: from li982-79.members.linode.com [45.33.32.79] by aws-us-west-2-korg-lkml-1.web.codeaurora.org with HTTPS for ; Sat, 05 Oct 2024 05:58:05 -0000 X-Groupsio-URL: https://lists.openembedded.org/g/openembedded-core/message/205238 * Needed for Gnome-47 components e.g. gnome-console * Add backports to fix build with clang libc++ Signed-off-by: Khem Raj --- v2: Backport fixes for few build errors ...01-tests-Remove-excessive-constrexpr.patch | 26 + .../vte/vte/0002-lib-Typo-fix.patch | 25 + .../vte/0003-Add-missing-system-headers.patch | 42 + ...ingle-header-library-for-from_char-i.patch | 3922 +++++++++++++++++ ...-fast_float-implementation-for-from_.patch | 102 + .../vte/{vte_0.76.3.bb => vte_0.78.0.bb} | 11 +- 6 files changed, 4125 insertions(+), 3 deletions(-) create mode 100644 meta/recipes-support/vte/vte/0001-tests-Remove-excessive-constrexpr.patch create mode 100644 meta/recipes-support/vte/vte/0002-lib-Typo-fix.patch create mode 100644 meta/recipes-support/vte/vte/0003-Add-missing-system-headers.patch create mode 100644 meta/recipes-support/vte/vte/0004-fast_float-Add-single-header-library-for-from_char-i.patch create mode 100644 meta/recipes-support/vte/vte/0005-color-parser-Use-fast_float-implementation-for-from_.patch rename meta/recipes-support/vte/{vte_0.76.3.bb => vte_0.78.0.bb} (84%) diff --git a/meta/recipes-support/vte/vte/0001-tests-Remove-excessive-constrexpr.patch b/meta/recipes-support/vte/vte/0001-tests-Remove-excessive-constrexpr.patch new file mode 100644 index 00000000000..779814f2579 --- /dev/null +++ b/meta/recipes-support/vte/vte/0001-tests-Remove-excessive-constrexpr.patch @@ -0,0 +1,26 @@ +From 01a5c8235f8b3f7c691921169ad125a395186b3f Mon Sep 17 00:00:00 2001 +From: Christian Persch +Date: Tue, 17 Sep 2024 18:21:32 +0200 +Subject: [PATCH 1/3] tests: Remove excessive constrexpr + +Fixes: https://gitlab.gnome.org/GNOME/vte/-/issues/2819 + +Upstream-Status: Backport [https://gitlab.gnome.org/GNOME/vte/-/commit/c8838779d5f8c0e03411cef9775cd8f5a10a6204] +Signed-off-by: Khem Raj +--- + src/color-test.cc | 2 +- + 1 file changed, 1 insertion(+), 1 deletion(-) + +diff --git a/src/color-test.cc b/src/color-test.cc +index 0ed9089..1bfad31 100644 +--- a/src/color-test.cc ++++ b/src/color-test.cc +@@ -165,7 +165,7 @@ static void + test_color_to_string (void) + { + auto test = [](std::string str, +- bool alpha = false) constexpr noexcept -> void ++ bool alpha = false) noexcept -> void + { + auto const value = parse(str); + assert(value); diff --git a/meta/recipes-support/vte/vte/0002-lib-Typo-fix.patch b/meta/recipes-support/vte/vte/0002-lib-Typo-fix.patch new file mode 100644 index 00000000000..410d5068060 --- /dev/null +++ b/meta/recipes-support/vte/vte/0002-lib-Typo-fix.patch @@ -0,0 +1,25 @@ +From 6b7440996819c12ec32bfaf4e73b27baeb273207 Mon Sep 17 00:00:00 2001 +From: Christian Persch +Date: Thu, 5 Sep 2024 23:59:05 +0200 +Subject: [PATCH 2/3] lib: Typo fix + +Fixes: https://gitlab.gnome.org/GNOME/vte/-/issues/2816 +Upstream-Status: Backport [https://gitlab.gnome.org/GNOME/vte/-/commit/e24087d953d9352c8bc46074e2662c80f9bfbc2d] +Signed-off-by: Khem Raj +--- + src/vteinternal.hh | 2 +- + 1 file changed, 1 insertion(+), 1 deletion(-) + +diff --git a/src/vteinternal.hh b/src/vteinternal.hh +index 051e78c..b1adc19 100644 +--- a/src/vteinternal.hh ++++ b/src/vteinternal.hh +@@ -1233,7 +1233,7 @@ public: + void reset_decoder(); + + void feed(std::string_view const& data, +- bool start_processsing_ = true); ++ bool start_processing_ = true); + void feed_child(char const* data, + size_t length) { assert(data); feed_child({data, length}); } + void feed_child(std::string_view const& str); diff --git a/meta/recipes-support/vte/vte/0003-Add-missing-system-headers.patch b/meta/recipes-support/vte/vte/0003-Add-missing-system-headers.patch new file mode 100644 index 00000000000..66d2beb15a4 --- /dev/null +++ b/meta/recipes-support/vte/vte/0003-Add-missing-system-headers.patch @@ -0,0 +1,42 @@ +From add3dd52d2e2c19dfa9319de8d8335dca802ba5a Mon Sep 17 00:00:00 2001 +From: Khem Raj +Date: Mon, 30 Sep 2024 22:36:09 -0700 +Subject: [PATCH 3/3] Add missing system headers + +These are found out when using clang libc++ + +algorithm is needed for std::max and std::min +string_view for string_view + +Upstream-Status: Submitted [https://gitlab.gnome.org/GNOME/vte/-/issues/2824] +Signed-off-by: Khem Raj + +--- + src/icu-glue.hh | 1 + + src/minifont.cc | 1 + + 2 files changed, 2 insertions(+) + +diff --git a/src/icu-glue.hh b/src/icu-glue.hh +index f2c3331..f72999b 100644 +--- a/src/icu-glue.hh ++++ b/src/icu-glue.hh +@@ -20,6 +20,7 @@ + #include + #include + #include ++#include + + namespace vte::base { + +diff --git a/src/minifont.cc b/src/minifont.cc +index 9be96d6..f4fe0bf 100644 +--- a/src/minifont.cc ++++ b/src/minifont.cc +@@ -18,6 +18,7 @@ + + #include "config.h" + ++#include + #include + + #include "cairo-glue.hh" diff --git a/meta/recipes-support/vte/vte/0004-fast_float-Add-single-header-library-for-from_char-i.patch b/meta/recipes-support/vte/vte/0004-fast_float-Add-single-header-library-for-from_char-i.patch new file mode 100644 index 00000000000..731dba729d8 --- /dev/null +++ b/meta/recipes-support/vte/vte/0004-fast_float-Add-single-header-library-for-from_char-i.patch @@ -0,0 +1,3922 @@ +From 2a32e43e43b04771a3357d3d4ccbafa7714e0114 Mon Sep 17 00:00:00 2001 +From: Khem Raj +Date: Fri, 4 Oct 2024 21:21:11 -0700 +Subject: [PATCH 4/5] fast_float: Add single header library for from_char + implementation + +Document the process to re-generate the file whenever new release +is made for fast_float upstream. + +This would make it work with llvm libc++ + +Upstream-Status: Submitted [https://gitlab.gnome.org/GNOME/vte/-/issues/2823#note_2239888] +Signed-off-by: Khem Raj +--- + README.md | 17 + + src/fast_float.hh | 3869 +++++++++++++++++++++++++++++++++++++++++++++ + 2 files changed, 3886 insertions(+) + create mode 100644 src/fast_float.hh + +diff --git a/README.md b/README.md +index a32465a9..20ed5ba2 100644 +--- a/README.md ++++ b/README.md +@@ -21,6 +21,23 @@ on download.gnome.org, but please note that any tarball for releases + after 0.60.3 were made by either the gnome release team or other + gnome contributors, but not by a VTE maintainer. + ++fast_float library[1] is used to provide from_chars implementation for faster ++and more portable parsing of 64 decimal strings. ++ ++fast_float.hh is an amalgamation of the entire library, ++which can be regenerated by using amalgamate.py script provided by ++fast_float repository. Following command can be used to re-generate the ++header file ++ ++``` ++git clone https://github.com/fastfloat/fast_float ++cd fast_float ++git checkout v6.1.6 ++python3 ./script/amalgamate.py --license=MIT > $VTE_SRC/src/fast_float.hh ++``` ++ ++[1]: https://github.com/fastfloat/fast_float ++ + Installation + ------------ + +diff --git a/src/fast_float.hh b/src/fast_float.hh +new file mode 100644 +index 00000000..e0d5dd53 +--- /dev/null ++++ b/src/fast_float.hh +@@ -0,0 +1,3869 @@ ++// fast_float by Daniel Lemire ++// fast_float by João Paulo Magalhaes ++// ++// ++// with contributions from Eugene Golushkov ++// with contributions from Maksim Kita ++// with contributions from Marcin Wojdyr ++// with contributions from Neal Richardson ++// with contributions from Tim Paine ++// with contributions from Fabio Pellacini ++// with contributions from Lénárd Szolnoki ++// with contributions from Jan Pharago ++// with contributions from Maya Warrier ++// with contributions from Taha Khokhar ++// ++// ++// MIT License Notice ++// ++// MIT License ++// ++// Copyright (c) 2021 The fast_float authors ++// ++// Permission is hereby granted, free of charge, to any ++// person obtaining a copy of this software and associated ++// documentation files (the "Software"), to deal in the ++// Software without restriction, including without ++// limitation the rights to use, copy, modify, merge, ++// publish, distribute, sublicense, and/or sell copies of ++// the Software, and to permit persons to whom the Software ++// is furnished to do so, subject to the following ++// conditions: ++// ++// The above copyright notice and this permission notice ++// shall be included in all copies or substantial portions ++// of the Software. ++// ++// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ++// ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED ++// TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A ++// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT ++// SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY ++// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION ++// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR ++// IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER ++// DEALINGS IN THE SOFTWARE. ++// ++ ++#ifndef FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H ++#define FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H ++ ++#ifdef __has_include ++#if __has_include() ++#include ++#endif ++#endif ++ ++// Testing for https://wg21.link/N3652, adopted in C++14 ++#if __cpp_constexpr >= 201304 ++#define FASTFLOAT_CONSTEXPR14 constexpr ++#else ++#define FASTFLOAT_CONSTEXPR14 ++#endif ++ ++#if defined(__cpp_lib_bit_cast) && __cpp_lib_bit_cast >= 201806L ++#define FASTFLOAT_HAS_BIT_CAST 1 ++#else ++#define FASTFLOAT_HAS_BIT_CAST 0 ++#endif ++ ++#if defined(__cpp_lib_is_constant_evaluated) && \ ++ __cpp_lib_is_constant_evaluated >= 201811L ++#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 1 ++#else ++#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 0 ++#endif ++ ++// Testing for relevant C++20 constexpr library features ++#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED && FASTFLOAT_HAS_BIT_CAST && \ ++ __cpp_lib_constexpr_algorithms >= 201806L /*For std::copy and std::fill*/ ++#define FASTFLOAT_CONSTEXPR20 constexpr ++#define FASTFLOAT_IS_CONSTEXPR 1 ++#else ++#define FASTFLOAT_CONSTEXPR20 ++#define FASTFLOAT_IS_CONSTEXPR 0 ++#endif ++ ++#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L) ++#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 0 ++#else ++#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 1 ++#endif ++ ++#endif // FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H ++ ++#ifndef FASTFLOAT_FLOAT_COMMON_H ++#define FASTFLOAT_FLOAT_COMMON_H ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#ifdef __has_include ++#if __has_include() && (__cplusplus > 202002L || _MSVC_LANG > 202002L) ++#include ++#endif ++#endif ++ ++namespace fast_float { ++ ++#define FASTFLOAT_JSONFMT (1 << 5) ++#define FASTFLOAT_FORTRANFMT (1 << 6) ++ ++enum chars_format { ++ scientific = 1 << 0, ++ fixed = 1 << 2, ++ hex = 1 << 3, ++ no_infnan = 1 << 4, ++ // RFC 8259: https://datatracker.ietf.org/doc/html/rfc8259#section-6 ++ json = FASTFLOAT_JSONFMT | fixed | scientific | no_infnan, ++ // Extension of RFC 8259 where, e.g., "inf" and "nan" are allowed. ++ json_or_infnan = FASTFLOAT_JSONFMT | fixed | scientific, ++ fortran = FASTFLOAT_FORTRANFMT | fixed | scientific, ++ general = fixed | scientific ++}; ++ ++template struct from_chars_result_t { ++ UC const *ptr; ++ std::errc ec; ++}; ++using from_chars_result = from_chars_result_t; ++ ++template struct parse_options_t { ++ constexpr explicit parse_options_t(chars_format fmt = chars_format::general, ++ UC dot = UC('.')) ++ : format(fmt), decimal_point(dot) {} ++ ++ /** Which number formats are accepted */ ++ chars_format format; ++ /** The character used as decimal point */ ++ UC decimal_point; ++}; ++using parse_options = parse_options_t; ++ ++} // namespace fast_float ++ ++#if FASTFLOAT_HAS_BIT_CAST ++#include ++#endif ++ ++#if (defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ ++ defined(__amd64) || defined(__aarch64__) || defined(_M_ARM64) || \ ++ defined(__MINGW64__) || defined(__s390x__) || \ ++ (defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || \ ++ defined(__PPC64LE__)) || \ ++ defined(__loongarch64)) ++#define FASTFLOAT_64BIT 1 ++#elif (defined(__i386) || defined(__i386__) || defined(_M_IX86) || \ ++ defined(__arm__) || defined(_M_ARM) || defined(__ppc__) || \ ++ defined(__MINGW32__) || defined(__EMSCRIPTEN__)) ++#define FASTFLOAT_32BIT 1 ++#else ++ // Need to check incrementally, since SIZE_MAX is a size_t, avoid overflow. ++// We can never tell the register width, but the SIZE_MAX is a good ++// approximation. UINTPTR_MAX and INTPTR_MAX are optional, so avoid them for max ++// portability. ++#if SIZE_MAX == 0xffff ++#error Unknown platform (16-bit, unsupported) ++#elif SIZE_MAX == 0xffffffff ++#define FASTFLOAT_32BIT 1 ++#elif SIZE_MAX == 0xffffffffffffffff ++#define FASTFLOAT_64BIT 1 ++#else ++#error Unknown platform (not 32-bit, not 64-bit?) ++#endif ++#endif ++ ++#if ((defined(_WIN32) || defined(_WIN64)) && !defined(__clang__)) || \ ++ (defined(_M_ARM64) && !defined(__MINGW32__)) ++#include ++#endif ++ ++#if defined(_MSC_VER) && !defined(__clang__) ++#define FASTFLOAT_VISUAL_STUDIO 1 ++#endif ++ ++#if defined __BYTE_ORDER__ && defined __ORDER_BIG_ENDIAN__ ++#define FASTFLOAT_IS_BIG_ENDIAN (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) ++#elif defined _WIN32 ++#define FASTFLOAT_IS_BIG_ENDIAN 0 ++#else ++#if defined(__APPLE__) || defined(__FreeBSD__) ++#include ++#elif defined(sun) || defined(__sun) ++#include ++#elif defined(__MVS__) ++#include ++#else ++#ifdef __has_include ++#if __has_include() ++#include ++#endif //__has_include() ++#endif //__has_include ++#endif ++# ++#ifndef __BYTE_ORDER__ ++// safe choice ++#define FASTFLOAT_IS_BIG_ENDIAN 0 ++#endif ++# ++#ifndef __ORDER_LITTLE_ENDIAN__ ++// safe choice ++#define FASTFLOAT_IS_BIG_ENDIAN 0 ++#endif ++# ++#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ++#define FASTFLOAT_IS_BIG_ENDIAN 0 ++#else ++#define FASTFLOAT_IS_BIG_ENDIAN 1 ++#endif ++#endif ++ ++#if defined(__SSE2__) || (defined(FASTFLOAT_VISUAL_STUDIO) && \ ++ (defined(_M_AMD64) || defined(_M_X64) || \ ++ (defined(_M_IX86_FP) && _M_IX86_FP == 2))) ++#define FASTFLOAT_SSE2 1 ++#endif ++ ++#if defined(__aarch64__) || defined(_M_ARM64) ++#define FASTFLOAT_NEON 1 ++#endif ++ ++#if defined(FASTFLOAT_SSE2) || defined(FASTFLOAT_NEON) ++#define FASTFLOAT_HAS_SIMD 1 ++#endif ++ ++#if defined(__GNUC__) ++// disable -Wcast-align=strict (GCC only) ++#define FASTFLOAT_SIMD_DISABLE_WARNINGS \ ++ _Pragma("GCC diagnostic push") \ ++ _Pragma("GCC diagnostic ignored \"-Wcast-align\"") ++#else ++#define FASTFLOAT_SIMD_DISABLE_WARNINGS ++#endif ++ ++#if defined(__GNUC__) ++#define FASTFLOAT_SIMD_RESTORE_WARNINGS _Pragma("GCC diagnostic pop") ++#else ++#define FASTFLOAT_SIMD_RESTORE_WARNINGS ++#endif ++ ++#ifdef FASTFLOAT_VISUAL_STUDIO ++#define fastfloat_really_inline __forceinline ++#else ++#define fastfloat_really_inline inline __attribute__((always_inline)) ++#endif ++ ++#ifndef FASTFLOAT_ASSERT ++#define FASTFLOAT_ASSERT(x) \ ++ { ((void)(x)); } ++#endif ++ ++#ifndef FASTFLOAT_DEBUG_ASSERT ++#define FASTFLOAT_DEBUG_ASSERT(x) \ ++ { ((void)(x)); } ++#endif ++ ++// rust style `try!()` macro, or `?` operator ++#define FASTFLOAT_TRY(x) \ ++ { \ ++ if (!(x)) \ ++ return false; \ ++ } ++ ++#define FASTFLOAT_ENABLE_IF(...) \ ++ typename std::enable_if<(__VA_ARGS__), int>::type ++ ++namespace fast_float { ++ ++fastfloat_really_inline constexpr bool cpp20_and_in_constexpr() { ++#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED ++ return std::is_constant_evaluated(); ++#else ++ return false; ++#endif ++} ++ ++template ++fastfloat_really_inline constexpr bool is_supported_float_type() { ++ return std::is_same::value || std::is_same::value ++#if __STDCPP_FLOAT32_T__ ++ || std::is_same::value ++#endif ++#if __STDCPP_FLOAT64_T__ ++ || std::is_same::value ++#endif ++ ; ++} ++ ++template ++fastfloat_really_inline constexpr bool is_supported_char_type() { ++ return std::is_same::value || std::is_same::value || ++ std::is_same::value || std::is_same::value; ++} ++ ++// Compares two ASCII strings in a case insensitive manner. ++template ++inline FASTFLOAT_CONSTEXPR14 bool ++fastfloat_strncasecmp(UC const *input1, UC const *input2, size_t length) { ++ char running_diff{0}; ++ for (size_t i = 0; i < length; ++i) { ++ running_diff |= (char(input1[i]) ^ char(input2[i])); ++ } ++ return (running_diff == 0) || (running_diff == 32); ++} ++ ++#ifndef FLT_EVAL_METHOD ++#error "FLT_EVAL_METHOD should be defined, please include cfloat." ++#endif ++ ++// a pointer and a length to a contiguous block of memory ++template struct span { ++ const T *ptr; ++ size_t length; ++ constexpr span(const T *_ptr, size_t _length) : ptr(_ptr), length(_length) {} ++ constexpr span() : ptr(nullptr), length(0) {} ++ ++ constexpr size_t len() const noexcept { return length; } ++ ++ FASTFLOAT_CONSTEXPR14 const T &operator[](size_t index) const noexcept { ++ FASTFLOAT_DEBUG_ASSERT(index < length); ++ return ptr[index]; ++ } ++}; ++ ++struct value128 { ++ uint64_t low; ++ uint64_t high; ++ constexpr value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {} ++ constexpr value128() : low(0), high(0) {} ++}; ++ ++/* Helper C++14 constexpr generic implementation of leading_zeroes */ ++fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int ++leading_zeroes_generic(uint64_t input_num, int last_bit = 0) { ++ if (input_num & uint64_t(0xffffffff00000000)) { ++ input_num >>= 32; ++ last_bit |= 32; ++ } ++ if (input_num & uint64_t(0xffff0000)) { ++ input_num >>= 16; ++ last_bit |= 16; ++ } ++ if (input_num & uint64_t(0xff00)) { ++ input_num >>= 8; ++ last_bit |= 8; ++ } ++ if (input_num & uint64_t(0xf0)) { ++ input_num >>= 4; ++ last_bit |= 4; ++ } ++ if (input_num & uint64_t(0xc)) { ++ input_num >>= 2; ++ last_bit |= 2; ++ } ++ if (input_num & uint64_t(0x2)) { /* input_num >>= 1; */ ++ last_bit |= 1; ++ } ++ return 63 - last_bit; ++} ++ ++/* result might be undefined when input_num is zero */ ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 int ++leading_zeroes(uint64_t input_num) { ++ assert(input_num > 0); ++ if (cpp20_and_in_constexpr()) { ++ return leading_zeroes_generic(input_num); ++ } ++#ifdef FASTFLOAT_VISUAL_STUDIO ++#if defined(_M_X64) || defined(_M_ARM64) ++ unsigned long leading_zero = 0; ++ // Search the mask data from most significant bit (MSB) ++ // to least significant bit (LSB) for a set bit (1). ++ _BitScanReverse64(&leading_zero, input_num); ++ return (int)(63 - leading_zero); ++#else ++ return leading_zeroes_generic(input_num); ++#endif ++#else ++ return __builtin_clzll(input_num); ++#endif ++} ++ ++// slow emulation routine for 32-bit ++fastfloat_really_inline constexpr uint64_t emulu(uint32_t x, uint32_t y) { ++ return x * (uint64_t)y; ++} ++ ++fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t ++umul128_generic(uint64_t ab, uint64_t cd, uint64_t *hi) { ++ uint64_t ad = emulu((uint32_t)(ab >> 32), (uint32_t)cd); ++ uint64_t bd = emulu((uint32_t)ab, (uint32_t)cd); ++ uint64_t adbc = ad + emulu((uint32_t)ab, (uint32_t)(cd >> 32)); ++ uint64_t adbc_carry = (uint64_t)(adbc < ad); ++ uint64_t lo = bd + (adbc << 32); ++ *hi = emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) + ++ (adbc_carry << 32) + (uint64_t)(lo < bd); ++ return lo; ++} ++ ++#ifdef FASTFLOAT_32BIT ++ ++// slow emulation routine for 32-bit ++#if !defined(__MINGW64__) ++fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t _umul128(uint64_t ab, ++ uint64_t cd, ++ uint64_t *hi) { ++ return umul128_generic(ab, cd, hi); ++} ++#endif // !__MINGW64__ ++ ++#endif // FASTFLOAT_32BIT ++ ++// compute 64-bit a*b ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128 ++full_multiplication(uint64_t a, uint64_t b) { ++ if (cpp20_and_in_constexpr()) { ++ value128 answer; ++ answer.low = umul128_generic(a, b, &answer.high); ++ return answer; ++ } ++ value128 answer; ++#if defined(_M_ARM64) && !defined(__MINGW32__) ++ // ARM64 has native support for 64-bit multiplications, no need to emulate ++ // But MinGW on ARM64 doesn't have native support for 64-bit multiplications ++ answer.high = __umulh(a, b); ++ answer.low = a * b; ++#elif defined(FASTFLOAT_32BIT) || \ ++ (defined(_WIN64) && !defined(__clang__) && !defined(_M_ARM64)) ++ answer.low = _umul128(a, b, &answer.high); // _umul128 not available on ARM64 ++#elif defined(FASTFLOAT_64BIT) && defined(__SIZEOF_INT128__) ++ __uint128_t r = ((__uint128_t)a) * b; ++ answer.low = uint64_t(r); ++ answer.high = uint64_t(r >> 64); ++#else ++ answer.low = umul128_generic(a, b, &answer.high); ++#endif ++ return answer; ++} ++ ++struct adjusted_mantissa { ++ uint64_t mantissa{0}; ++ int32_t power2{0}; // a negative value indicates an invalid result ++ adjusted_mantissa() = default; ++ constexpr bool operator==(const adjusted_mantissa &o) const { ++ return mantissa == o.mantissa && power2 == o.power2; ++ } ++ constexpr bool operator!=(const adjusted_mantissa &o) const { ++ return mantissa != o.mantissa || power2 != o.power2; ++ } ++}; ++ ++// Bias so we can get the real exponent with an invalid adjusted_mantissa. ++constexpr static int32_t invalid_am_bias = -0x8000; ++ ++// used for binary_format_lookup_tables::max_mantissa ++constexpr uint64_t constant_55555 = 5 * 5 * 5 * 5 * 5; ++ ++template struct binary_format_lookup_tables; ++ ++template struct binary_format : binary_format_lookup_tables { ++ using equiv_uint = ++ typename std::conditional::type; ++ ++ static inline constexpr int mantissa_explicit_bits(); ++ static inline constexpr int minimum_exponent(); ++ static inline constexpr int infinite_power(); ++ static inline constexpr int sign_index(); ++ static inline constexpr int ++ min_exponent_fast_path(); // used when fegetround() == FE_TONEAREST ++ static inline constexpr int max_exponent_fast_path(); ++ static inline constexpr int max_exponent_round_to_even(); ++ static inline constexpr int min_exponent_round_to_even(); ++ static inline constexpr uint64_t max_mantissa_fast_path(int64_t power); ++ static inline constexpr uint64_t ++ max_mantissa_fast_path(); // used when fegetround() == FE_TONEAREST ++ static inline constexpr int largest_power_of_ten(); ++ static inline constexpr int smallest_power_of_ten(); ++ static inline constexpr T exact_power_of_ten(int64_t power); ++ static inline constexpr size_t max_digits(); ++ static inline constexpr equiv_uint exponent_mask(); ++ static inline constexpr equiv_uint mantissa_mask(); ++ static inline constexpr equiv_uint hidden_bit_mask(); ++}; ++ ++template struct binary_format_lookup_tables { ++ static constexpr double powers_of_ten[] = { ++ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, ++ 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; ++ ++ // Largest integer value v so that (5**index * v) <= 1<<53. ++ // 0x20000000000000 == 1 << 53 ++ static constexpr uint64_t max_mantissa[] = { ++ 0x20000000000000, ++ 0x20000000000000 / 5, ++ 0x20000000000000 / (5 * 5), ++ 0x20000000000000 / (5 * 5 * 5), ++ 0x20000000000000 / (5 * 5 * 5 * 5), ++ 0x20000000000000 / (constant_55555), ++ 0x20000000000000 / (constant_55555 * 5), ++ 0x20000000000000 / (constant_55555 * 5 * 5), ++ 0x20000000000000 / (constant_55555 * 5 * 5 * 5), ++ 0x20000000000000 / (constant_55555 * 5 * 5 * 5 * 5), ++ 0x20000000000000 / (constant_55555 * constant_55555), ++ 0x20000000000000 / (constant_55555 * constant_55555 * 5), ++ 0x20000000000000 / (constant_55555 * constant_55555 * 5 * 5), ++ 0x20000000000000 / (constant_55555 * constant_55555 * 5 * 5 * 5), ++ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555), ++ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5), ++ 0x20000000000000 / ++ (constant_55555 * constant_55555 * constant_55555 * 5 * 5), ++ 0x20000000000000 / ++ (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5), ++ 0x20000000000000 / ++ (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5), ++ 0x20000000000000 / ++ (constant_55555 * constant_55555 * constant_55555 * constant_55555), ++ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * ++ constant_55555 * 5), ++ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * ++ constant_55555 * 5 * 5), ++ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * ++ constant_55555 * 5 * 5 * 5), ++ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * ++ constant_55555 * 5 * 5 * 5 * 5)}; ++}; ++ ++#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE ++ ++template ++constexpr double binary_format_lookup_tables::powers_of_ten[]; ++ ++template ++constexpr uint64_t binary_format_lookup_tables::max_mantissa[]; ++ ++#endif ++ ++template struct binary_format_lookup_tables { ++ static constexpr float powers_of_ten[] = {1e0f, 1e1f, 1e2f, 1e3f, 1e4f, 1e5f, ++ 1e6f, 1e7f, 1e8f, 1e9f, 1e10f}; ++ ++ // Largest integer value v so that (5**index * v) <= 1<<24. ++ // 0x1000000 == 1<<24 ++ static constexpr uint64_t max_mantissa[] = { ++ 0x1000000, ++ 0x1000000 / 5, ++ 0x1000000 / (5 * 5), ++ 0x1000000 / (5 * 5 * 5), ++ 0x1000000 / (5 * 5 * 5 * 5), ++ 0x1000000 / (constant_55555), ++ 0x1000000 / (constant_55555 * 5), ++ 0x1000000 / (constant_55555 * 5 * 5), ++ 0x1000000 / (constant_55555 * 5 * 5 * 5), ++ 0x1000000 / (constant_55555 * 5 * 5 * 5 * 5), ++ 0x1000000 / (constant_55555 * constant_55555), ++ 0x1000000 / (constant_55555 * constant_55555 * 5)}; ++}; ++ ++#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE ++ ++template ++constexpr float binary_format_lookup_tables::powers_of_ten[]; ++ ++template ++constexpr uint64_t binary_format_lookup_tables::max_mantissa[]; ++ ++#endif ++ ++template <> ++inline constexpr int binary_format::min_exponent_fast_path() { ++#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) ++ return 0; ++#else ++ return -22; ++#endif ++} ++ ++template <> ++inline constexpr int binary_format::min_exponent_fast_path() { ++#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) ++ return 0; ++#else ++ return -10; ++#endif ++} ++ ++template <> ++inline constexpr int binary_format::mantissa_explicit_bits() { ++ return 52; ++} ++template <> ++inline constexpr int binary_format::mantissa_explicit_bits() { ++ return 23; ++} ++ ++template <> ++inline constexpr int binary_format::max_exponent_round_to_even() { ++ return 23; ++} ++ ++template <> ++inline constexpr int binary_format::max_exponent_round_to_even() { ++ return 10; ++} ++ ++template <> ++inline constexpr int binary_format::min_exponent_round_to_even() { ++ return -4; ++} ++ ++template <> ++inline constexpr int binary_format::min_exponent_round_to_even() { ++ return -17; ++} ++ ++template <> inline constexpr int binary_format::minimum_exponent() { ++ return -1023; ++} ++template <> inline constexpr int binary_format::minimum_exponent() { ++ return -127; ++} ++ ++template <> inline constexpr int binary_format::infinite_power() { ++ return 0x7FF; ++} ++template <> inline constexpr int binary_format::infinite_power() { ++ return 0xFF; ++} ++ ++template <> inline constexpr int binary_format::sign_index() { ++ return 63; ++} ++template <> inline constexpr int binary_format::sign_index() { ++ return 31; ++} ++ ++template <> ++inline constexpr int binary_format::max_exponent_fast_path() { ++ return 22; ++} ++template <> ++inline constexpr int binary_format::max_exponent_fast_path() { ++ return 10; ++} ++ ++template <> ++inline constexpr uint64_t binary_format::max_mantissa_fast_path() { ++ return uint64_t(2) << mantissa_explicit_bits(); ++} ++template <> ++inline constexpr uint64_t ++binary_format::max_mantissa_fast_path(int64_t power) { ++ // caller is responsible to ensure that ++ // power >= 0 && power <= 22 ++ // ++ // Work around clang bug https://godbolt.org/z/zedh7rrhc ++ return (void)max_mantissa[0], max_mantissa[power]; ++} ++template <> ++inline constexpr uint64_t binary_format::max_mantissa_fast_path() { ++ return uint64_t(2) << mantissa_explicit_bits(); ++} ++template <> ++inline constexpr uint64_t ++binary_format::max_mantissa_fast_path(int64_t power) { ++ // caller is responsible to ensure that ++ // power >= 0 && power <= 10 ++ // ++ // Work around clang bug https://godbolt.org/z/zedh7rrhc ++ return (void)max_mantissa[0], max_mantissa[power]; ++} ++ ++template <> ++inline constexpr double ++binary_format::exact_power_of_ten(int64_t power) { ++ // Work around clang bug https://godbolt.org/z/zedh7rrhc ++ return (void)powers_of_ten[0], powers_of_ten[power]; ++} ++template <> ++inline constexpr float binary_format::exact_power_of_ten(int64_t power) { ++ // Work around clang bug https://godbolt.org/z/zedh7rrhc ++ return (void)powers_of_ten[0], powers_of_ten[power]; ++} ++ ++template <> inline constexpr int binary_format::largest_power_of_ten() { ++ return 308; ++} ++template <> inline constexpr int binary_format::largest_power_of_ten() { ++ return 38; ++} ++ ++template <> ++inline constexpr int binary_format::smallest_power_of_ten() { ++ return -342; ++} ++template <> inline constexpr int binary_format::smallest_power_of_ten() { ++ return -64; ++} ++ ++template <> inline constexpr size_t binary_format::max_digits() { ++ return 769; ++} ++template <> inline constexpr size_t binary_format::max_digits() { ++ return 114; ++} ++ ++template <> ++inline constexpr binary_format::equiv_uint ++binary_format::exponent_mask() { ++ return 0x7F800000; ++} ++template <> ++inline constexpr binary_format::equiv_uint ++binary_format::exponent_mask() { ++ return 0x7FF0000000000000; ++} ++ ++template <> ++inline constexpr binary_format::equiv_uint ++binary_format::mantissa_mask() { ++ return 0x007FFFFF; ++} ++template <> ++inline constexpr binary_format::equiv_uint ++binary_format::mantissa_mask() { ++ return 0x000FFFFFFFFFFFFF; ++} ++ ++template <> ++inline constexpr binary_format::equiv_uint ++binary_format::hidden_bit_mask() { ++ return 0x00800000; ++} ++template <> ++inline constexpr binary_format::equiv_uint ++binary_format::hidden_bit_mask() { ++ return 0x0010000000000000; ++} ++ ++template ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void ++to_float(bool negative, adjusted_mantissa am, T &value) { ++ using fastfloat_uint = typename binary_format::equiv_uint; ++ fastfloat_uint word = (fastfloat_uint)am.mantissa; ++ word |= fastfloat_uint(am.power2) ++ << binary_format::mantissa_explicit_bits(); ++ word |= fastfloat_uint(negative) << binary_format::sign_index(); ++#if FASTFLOAT_HAS_BIT_CAST ++ value = std::bit_cast(word); ++#else ++ ::memcpy(&value, &word, sizeof(T)); ++#endif ++} ++ ++#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default ++template struct space_lut { ++ static constexpr bool value[] = { ++ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ++ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ++ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ++ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ++ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ++ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ++ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ++ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ++ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ++ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ++ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; ++}; ++ ++#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE ++ ++template constexpr bool space_lut::value[]; ++ ++#endif ++ ++inline constexpr bool is_space(uint8_t c) { return space_lut<>::value[c]; } ++#endif ++ ++template static constexpr uint64_t int_cmp_zeros() { ++ static_assert((sizeof(UC) == 1) || (sizeof(UC) == 2) || (sizeof(UC) == 4), ++ "Unsupported character size"); ++ return (sizeof(UC) == 1) ? 0x3030303030303030 ++ : (sizeof(UC) == 2) ++ ? (uint64_t(UC('0')) << 48 | uint64_t(UC('0')) << 32 | ++ uint64_t(UC('0')) << 16 | UC('0')) ++ : (uint64_t(UC('0')) << 32 | UC('0')); ++} ++template static constexpr int int_cmp_len() { ++ return sizeof(uint64_t) / sizeof(UC); ++} ++template static constexpr UC const *str_const_nan() { ++ return nullptr; ++} ++template <> constexpr char const *str_const_nan() { return "nan"; } ++template <> constexpr wchar_t const *str_const_nan() { return L"nan"; } ++template <> constexpr char16_t const *str_const_nan() { ++ return u"nan"; ++} ++template <> constexpr char32_t const *str_const_nan() { ++ return U"nan"; ++} ++template static constexpr UC const *str_const_inf() { ++ return nullptr; ++} ++template <> constexpr char const *str_const_inf() { return "infinity"; } ++template <> constexpr wchar_t const *str_const_inf() { ++ return L"infinity"; ++} ++template <> constexpr char16_t const *str_const_inf() { ++ return u"infinity"; ++} ++template <> constexpr char32_t const *str_const_inf() { ++ return U"infinity"; ++} ++ ++template struct int_luts { ++ static constexpr uint8_t chdigit[] = { ++ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, ++ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, ++ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, ++ 255, 255, 255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 255, 255, ++ 255, 255, 255, 255, 255, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, ++ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, ++ 35, 255, 255, 255, 255, 255, 255, 10, 11, 12, 13, 14, 15, 16, 17, ++ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, ++ 33, 34, 35, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, ++ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, ++ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, ++ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, ++ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, ++ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, ++ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, ++ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, ++ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, ++ 255}; ++ ++ static constexpr size_t maxdigits_u64[] = { ++ 64, 41, 32, 28, 25, 23, 22, 21, 20, 19, 18, 18, 17, 17, 16, 16, 16, 16, ++ 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13}; ++ ++ static constexpr uint64_t min_safe_u64[] = { ++ 9223372036854775808ull, 12157665459056928801ull, 4611686018427387904, ++ 7450580596923828125, 4738381338321616896, 3909821048582988049, ++ 9223372036854775808ull, 12157665459056928801ull, 10000000000000000000ull, ++ 5559917313492231481, 2218611106740436992, 8650415919381337933, ++ 2177953337809371136, 6568408355712890625, 1152921504606846976, ++ 2862423051509815793, 6746640616477458432, 15181127029874798299ull, ++ 1638400000000000000, 3243919932521508681, 6221821273427820544, ++ 11592836324538749809ull, 876488338465357824, 1490116119384765625, ++ 2481152873203736576, 4052555153018976267, 6502111422497947648, ++ 10260628712958602189ull, 15943230000000000000ull, 787662783788549761, ++ 1152921504606846976, 1667889514952984961, 2386420683693101056, ++ 3379220508056640625, 4738381338321616896}; ++}; ++ ++#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE ++ ++template constexpr uint8_t int_luts::chdigit[]; ++ ++template constexpr size_t int_luts::maxdigits_u64[]; ++ ++template constexpr uint64_t int_luts::min_safe_u64[]; ++ ++#endif ++ ++template ++fastfloat_really_inline constexpr uint8_t ch_to_digit(UC c) { ++ return int_luts<>::chdigit[static_cast(c)]; ++} ++ ++fastfloat_really_inline constexpr size_t max_digits_u64(int base) { ++ return int_luts<>::maxdigits_u64[base - 2]; ++} ++ ++// If a u64 is exactly max_digits_u64() in length, this is ++// the value below which it has definitely overflowed. ++fastfloat_really_inline constexpr uint64_t min_safe_u64(int base) { ++ return int_luts<>::min_safe_u64[base - 2]; ++} ++ ++} // namespace fast_float ++ ++#endif ++ ++ ++#ifndef FASTFLOAT_FAST_FLOAT_H ++#define FASTFLOAT_FAST_FLOAT_H ++ ++ ++namespace fast_float { ++/** ++ * This function parses the character sequence [first,last) for a number. It ++ * parses floating-point numbers expecting a locale-indepent format equivalent ++ * to what is used by std::strtod in the default ("C") locale. The resulting ++ * floating-point value is the closest floating-point values (using either float ++ * or double), using the "round to even" convention for values that would ++ * otherwise fall right in-between two values. That is, we provide exact parsing ++ * according to the IEEE standard. ++ * ++ * Given a successful parse, the pointer (`ptr`) in the returned value is set to ++ * point right after the parsed number, and the `value` referenced is set to the ++ * parsed value. In case of error, the returned `ec` contains a representative ++ * error, otherwise the default (`std::errc()`) value is stored. ++ * ++ * The implementation does not throw and does not allocate memory (e.g., with ++ * `new` or `malloc`). ++ * ++ * Like the C++17 standard, the `fast_float::from_chars` functions take an ++ * optional last argument of the type `fast_float::chars_format`. It is a bitset ++ * value: we check whether `fmt & fast_float::chars_format::fixed` and `fmt & ++ * fast_float::chars_format::scientific` are set to determine whether we allow ++ * the fixed point and scientific notation respectively. The default is ++ * `fast_float::chars_format::general` which allows both `fixed` and ++ * `scientific`. ++ */ ++template ())> ++FASTFLOAT_CONSTEXPR20 from_chars_result_t ++from_chars(UC const *first, UC const *last, T &value, ++ chars_format fmt = chars_format::general) noexcept; ++ ++/** ++ * Like from_chars, but accepts an `options` argument to govern number parsing. ++ */ ++template ++FASTFLOAT_CONSTEXPR20 from_chars_result_t ++from_chars_advanced(UC const *first, UC const *last, T &value, ++ parse_options_t options) noexcept; ++/** ++ * from_chars for integer types. ++ */ ++template ())> ++FASTFLOAT_CONSTEXPR20 from_chars_result_t ++from_chars(UC const *first, UC const *last, T &value, int base = 10) noexcept; ++ ++} // namespace fast_float ++#endif // FASTFLOAT_FAST_FLOAT_H ++ ++#ifndef FASTFLOAT_ASCII_NUMBER_H ++#define FASTFLOAT_ASCII_NUMBER_H ++ ++#include ++#include ++#include ++#include ++#include ++#include ++ ++ ++#ifdef FASTFLOAT_SSE2 ++#include ++#endif ++ ++#ifdef FASTFLOAT_NEON ++#include ++#endif ++ ++namespace fast_float { ++ ++template fastfloat_really_inline constexpr bool has_simd_opt() { ++#ifdef FASTFLOAT_HAS_SIMD ++ return std::is_same::value; ++#else ++ return false; ++#endif ++} ++ ++// Next function can be micro-optimized, but compilers are entirely ++// able to optimize it well. ++template ++fastfloat_really_inline constexpr bool is_integer(UC c) noexcept { ++ return !(c > UC('9') || c < UC('0')); ++} ++ ++fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) { ++ return (val & 0xFF00000000000000) >> 56 | (val & 0x00FF000000000000) >> 40 | ++ (val & 0x0000FF0000000000) >> 24 | (val & 0x000000FF00000000) >> 8 | ++ (val & 0x00000000FF000000) << 8 | (val & 0x0000000000FF0000) << 24 | ++ (val & 0x000000000000FF00) << 40 | (val & 0x00000000000000FF) << 56; ++} ++ ++// Read 8 UC into a u64. Truncates UC if not char. ++template ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t ++read8_to_u64(const UC *chars) { ++ if (cpp20_and_in_constexpr() || !std::is_same::value) { ++ uint64_t val = 0; ++ for (int i = 0; i < 8; ++i) { ++ val |= uint64_t(uint8_t(*chars)) << (i * 8); ++ ++chars; ++ } ++ return val; ++ } ++ uint64_t val; ++ ::memcpy(&val, chars, sizeof(uint64_t)); ++#if FASTFLOAT_IS_BIG_ENDIAN == 1 ++ // Need to read as-if the number was in little-endian order. ++ val = byteswap(val); ++#endif ++ return val; ++} ++ ++#ifdef FASTFLOAT_SSE2 ++ ++fastfloat_really_inline uint64_t simd_read8_to_u64(const __m128i data) { ++ FASTFLOAT_SIMD_DISABLE_WARNINGS ++ const __m128i packed = _mm_packus_epi16(data, data); ++#ifdef FASTFLOAT_64BIT ++ return uint64_t(_mm_cvtsi128_si64(packed)); ++#else ++ uint64_t value; ++ // Visual Studio + older versions of GCC don't support _mm_storeu_si64 ++ _mm_storel_epi64(reinterpret_cast<__m128i *>(&value), packed); ++ return value; ++#endif ++ FASTFLOAT_SIMD_RESTORE_WARNINGS ++} ++ ++fastfloat_really_inline uint64_t simd_read8_to_u64(const char16_t *chars) { ++ FASTFLOAT_SIMD_DISABLE_WARNINGS ++ return simd_read8_to_u64( ++ _mm_loadu_si128(reinterpret_cast(chars))); ++ FASTFLOAT_SIMD_RESTORE_WARNINGS ++} ++ ++#elif defined(FASTFLOAT_NEON) ++ ++fastfloat_really_inline uint64_t simd_read8_to_u64(const uint16x8_t data) { ++ FASTFLOAT_SIMD_DISABLE_WARNINGS ++ uint8x8_t utf8_packed = vmovn_u16(data); ++ return vget_lane_u64(vreinterpret_u64_u8(utf8_packed), 0); ++ FASTFLOAT_SIMD_RESTORE_WARNINGS ++} ++ ++fastfloat_really_inline uint64_t simd_read8_to_u64(const char16_t *chars) { ++ FASTFLOAT_SIMD_DISABLE_WARNINGS ++ return simd_read8_to_u64( ++ vld1q_u16(reinterpret_cast(chars))); ++ FASTFLOAT_SIMD_RESTORE_WARNINGS ++} ++ ++#endif // FASTFLOAT_SSE2 ++ ++// MSVC SFINAE is broken pre-VS2017 ++#if defined(_MSC_VER) && _MSC_VER <= 1900 ++template ++#else ++template ()) = 0> ++#endif ++// dummy for compile ++uint64_t simd_read8_to_u64(UC const *) { ++ return 0; ++} ++ ++// credit @aqrit ++fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint32_t ++parse_eight_digits_unrolled(uint64_t val) { ++ const uint64_t mask = 0x000000FF000000FF; ++ const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32) ++ const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32) ++ val -= 0x3030303030303030; ++ val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8; ++ val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32; ++ return uint32_t(val); ++} ++ ++// Call this if chars are definitely 8 digits. ++template ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint32_t ++parse_eight_digits_unrolled(UC const *chars) noexcept { ++ if (cpp20_and_in_constexpr() || !has_simd_opt()) { ++ return parse_eight_digits_unrolled(read8_to_u64(chars)); // truncation okay ++ } ++ return parse_eight_digits_unrolled(simd_read8_to_u64(chars)); ++} ++ ++// credit @aqrit ++fastfloat_really_inline constexpr bool ++is_made_of_eight_digits_fast(uint64_t val) noexcept { ++ return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) & ++ 0x8080808080808080)); ++} ++ ++#ifdef FASTFLOAT_HAS_SIMD ++ ++// Call this if chars might not be 8 digits. ++// Using this style (instead of is_made_of_eight_digits_fast() then ++// parse_eight_digits_unrolled()) ensures we don't load SIMD registers twice. ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool ++simd_parse_if_eight_digits_unrolled(const char16_t *chars, ++ uint64_t &i) noexcept { ++ if (cpp20_and_in_constexpr()) { ++ return false; ++ } ++#ifdef FASTFLOAT_SSE2 ++ FASTFLOAT_SIMD_DISABLE_WARNINGS ++ const __m128i data = ++ _mm_loadu_si128(reinterpret_cast(chars)); ++ ++ // (x - '0') <= 9 ++ // http://0x80.pl/articles/simd-parsing-int-sequences.html ++ const __m128i t0 = _mm_add_epi16(data, _mm_set1_epi16(32720)); ++ const __m128i t1 = _mm_cmpgt_epi16(t0, _mm_set1_epi16(-32759)); ++ ++ if (_mm_movemask_epi8(t1) == 0) { ++ i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data)); ++ return true; ++ } else ++ return false; ++ FASTFLOAT_SIMD_RESTORE_WARNINGS ++#elif defined(FASTFLOAT_NEON) ++ FASTFLOAT_SIMD_DISABLE_WARNINGS ++ const uint16x8_t data = vld1q_u16(reinterpret_cast(chars)); ++ ++ // (x - '0') <= 9 ++ // http://0x80.pl/articles/simd-parsing-int-sequences.html ++ const uint16x8_t t0 = vsubq_u16(data, vmovq_n_u16('0')); ++ const uint16x8_t mask = vcltq_u16(t0, vmovq_n_u16('9' - '0' + 1)); ++ ++ if (vminvq_u16(mask) == 0xFFFF) { ++ i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data)); ++ return true; ++ } else ++ return false; ++ FASTFLOAT_SIMD_RESTORE_WARNINGS ++#else ++ (void)chars; ++ (void)i; ++ return false; ++#endif // FASTFLOAT_SSE2 ++} ++ ++#endif // FASTFLOAT_HAS_SIMD ++ ++// MSVC SFINAE is broken pre-VS2017 ++#if defined(_MSC_VER) && _MSC_VER <= 1900 ++template ++#else ++template ()) = 0> ++#endif ++// dummy for compile ++bool simd_parse_if_eight_digits_unrolled(UC const *, uint64_t &) { ++ return 0; ++} ++ ++template ::value) = 0> ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void ++loop_parse_if_eight_digits(const UC *&p, const UC *const pend, uint64_t &i) { ++ if (!has_simd_opt()) { ++ return; ++ } ++ while ((std::distance(p, pend) >= 8) && ++ simd_parse_if_eight_digits_unrolled( ++ p, i)) { // in rare cases, this will overflow, but that's ok ++ p += 8; ++ } ++} ++ ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void ++loop_parse_if_eight_digits(const char *&p, const char *const pend, ++ uint64_t &i) { ++ // optimizes better than parse_if_eight_digits_unrolled() for UC = char. ++ while ((std::distance(p, pend) >= 8) && ++ is_made_of_eight_digits_fast(read8_to_u64(p))) { ++ i = i * 100000000 + ++ parse_eight_digits_unrolled(read8_to_u64( ++ p)); // in rare cases, this will overflow, but that's ok ++ p += 8; ++ } ++} ++ ++enum class parse_error { ++ no_error, ++ // [JSON-only] The minus sign must be followed by an integer. ++ missing_integer_after_sign, ++ // A sign must be followed by an integer or dot. ++ missing_integer_or_dot_after_sign, ++ // [JSON-only] The integer part must not have leading zeros. ++ leading_zeros_in_integer_part, ++ // [JSON-only] The integer part must have at least one digit. ++ no_digits_in_integer_part, ++ // [JSON-only] If there is a decimal point, there must be digits in the ++ // fractional part. ++ no_digits_in_fractional_part, ++ // The mantissa must have at least one digit. ++ no_digits_in_mantissa, ++ // Scientific notation requires an exponential part. ++ missing_exponential_part, ++}; ++ ++template struct parsed_number_string_t { ++ int64_t exponent{0}; ++ uint64_t mantissa{0}; ++ UC const *lastmatch{nullptr}; ++ bool negative{false}; ++ bool valid{false}; ++ bool too_many_digits{false}; ++ // contains the range of the significant digits ++ span integer{}; // non-nullable ++ span fraction{}; // nullable ++ parse_error error{parse_error::no_error}; ++}; ++ ++using byte_span = span; ++using parsed_number_string = parsed_number_string_t; ++ ++template ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t ++report_parse_error(UC const *p, parse_error error) { ++ parsed_number_string_t answer; ++ answer.valid = false; ++ answer.lastmatch = p; ++ answer.error = error; ++ return answer; ++} ++ ++// Assuming that you use no more than 19 digits, this will ++// parse an ASCII string. ++template ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t ++parse_number_string(UC const *p, UC const *pend, ++ parse_options_t options) noexcept { ++ chars_format const fmt = options.format; ++ UC const decimal_point = options.decimal_point; ++ ++ parsed_number_string_t answer; ++ answer.valid = false; ++ answer.too_many_digits = false; ++ answer.negative = (*p == UC('-')); ++#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default ++ if ((*p == UC('-')) || (!(fmt & FASTFLOAT_JSONFMT) && *p == UC('+'))) { ++#else ++ if (*p == UC('-')) { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here ++#endif ++ ++p; ++ if (p == pend) { ++ return report_parse_error( ++ p, parse_error::missing_integer_or_dot_after_sign); ++ } ++ if (fmt & FASTFLOAT_JSONFMT) { ++ if (!is_integer(*p)) { // a sign must be followed by an integer ++ return report_parse_error(p, ++ parse_error::missing_integer_after_sign); ++ } ++ } else { ++ if (!is_integer(*p) && ++ (*p != ++ decimal_point)) { // a sign must be followed by an integer or the dot ++ return report_parse_error( ++ p, parse_error::missing_integer_or_dot_after_sign); ++ } ++ } ++ } ++ UC const *const start_digits = p; ++ ++ uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad) ++ ++ while ((p != pend) && is_integer(*p)) { ++ // a multiplication by 10 is cheaper than an arbitrary integer ++ // multiplication ++ i = 10 * i + ++ uint64_t(*p - ++ UC('0')); // might overflow, we will handle the overflow later ++ ++p; ++ } ++ UC const *const end_of_integer_part = p; ++ int64_t digit_count = int64_t(end_of_integer_part - start_digits); ++ answer.integer = span(start_digits, size_t(digit_count)); ++ if (fmt & FASTFLOAT_JSONFMT) { ++ // at least 1 digit in integer part, without leading zeros ++ if (digit_count == 0) { ++ return report_parse_error(p, parse_error::no_digits_in_integer_part); ++ } ++ if ((start_digits[0] == UC('0') && digit_count > 1)) { ++ return report_parse_error(start_digits, ++ parse_error::leading_zeros_in_integer_part); ++ } ++ } ++ ++ int64_t exponent = 0; ++ const bool has_decimal_point = (p != pend) && (*p == decimal_point); ++ if (has_decimal_point) { ++ ++p; ++ UC const *before = p; ++ // can occur at most twice without overflowing, but let it occur more, since ++ // for integers with many digits, digit parsing is the primary bottleneck. ++ loop_parse_if_eight_digits(p, pend, i); ++ ++ while ((p != pend) && is_integer(*p)) { ++ uint8_t digit = uint8_t(*p - UC('0')); ++ ++p; ++ i = i * 10 + digit; // in rare cases, this will overflow, but that's ok ++ } ++ exponent = before - p; ++ answer.fraction = span(before, size_t(p - before)); ++ digit_count -= exponent; ++ } ++ if (fmt & FASTFLOAT_JSONFMT) { ++ // at least 1 digit in fractional part ++ if (has_decimal_point && exponent == 0) { ++ return report_parse_error(p, ++ parse_error::no_digits_in_fractional_part); ++ } ++ } else if (digit_count == ++ 0) { // we must have encountered at least one integer! ++ return report_parse_error(p, parse_error::no_digits_in_mantissa); ++ } ++ int64_t exp_number = 0; // explicit exponential part ++ if (((fmt & chars_format::scientific) && (p != pend) && ++ ((UC('e') == *p) || (UC('E') == *p))) || ++ ((fmt & FASTFLOAT_FORTRANFMT) && (p != pend) && ++ ((UC('+') == *p) || (UC('-') == *p) || (UC('d') == *p) || ++ (UC('D') == *p)))) { ++ UC const *location_of_e = p; ++ if ((UC('e') == *p) || (UC('E') == *p) || (UC('d') == *p) || ++ (UC('D') == *p)) { ++ ++p; ++ } ++ bool neg_exp = false; ++ if ((p != pend) && (UC('-') == *p)) { ++ neg_exp = true; ++ ++p; ++ } else if ((p != pend) && ++ (UC('+') == ++ *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1) ++ ++p; ++ } ++ if ((p == pend) || !is_integer(*p)) { ++ if (!(fmt & chars_format::fixed)) { ++ // The exponential part is invalid for scientific notation, so it must ++ // be a trailing token for fixed notation. However, fixed notation is ++ // disabled, so report a scientific notation error. ++ return report_parse_error(p, parse_error::missing_exponential_part); ++ } ++ // Otherwise, we will be ignoring the 'e'. ++ p = location_of_e; ++ } else { ++ while ((p != pend) && is_integer(*p)) { ++ uint8_t digit = uint8_t(*p - UC('0')); ++ if (exp_number < 0x10000000) { ++ exp_number = 10 * exp_number + digit; ++ } ++ ++p; ++ } ++ if (neg_exp) { ++ exp_number = -exp_number; ++ } ++ exponent += exp_number; ++ } ++ } else { ++ // If it scientific and not fixed, we have to bail out. ++ if ((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { ++ return report_parse_error(p, parse_error::missing_exponential_part); ++ } ++ } ++ answer.lastmatch = p; ++ answer.valid = true; ++ ++ // If we frequently had to deal with long strings of digits, ++ // we could extend our code by using a 128-bit integer instead ++ // of a 64-bit integer. However, this is uncommon. ++ // ++ // We can deal with up to 19 digits. ++ if (digit_count > 19) { // this is uncommon ++ // It is possible that the integer had an overflow. ++ // We have to handle the case where we have 0.0000somenumber. ++ // We need to be mindful of the case where we only have zeroes... ++ // E.g., 0.000000000...000. ++ UC const *start = start_digits; ++ while ((start != pend) && (*start == UC('0') || *start == decimal_point)) { ++ if (*start == UC('0')) { ++ digit_count--; ++ } ++ start++; ++ } ++ ++ if (digit_count > 19) { ++ answer.too_many_digits = true; ++ // Let us start again, this time, avoiding overflows. ++ // We don't need to check if is_integer, since we use the ++ // pre-tokenized spans from above. ++ i = 0; ++ p = answer.integer.ptr; ++ UC const *int_end = p + answer.integer.len(); ++ const uint64_t minimal_nineteen_digit_integer{1000000000000000000}; ++ while ((i < minimal_nineteen_digit_integer) && (p != int_end)) { ++ i = i * 10 + uint64_t(*p - UC('0')); ++ ++p; ++ } ++ if (i >= minimal_nineteen_digit_integer) { // We have a big integers ++ exponent = end_of_integer_part - p + exp_number; ++ } else { // We have a value with a fractional component. ++ p = answer.fraction.ptr; ++ UC const *frac_end = p + answer.fraction.len(); ++ while ((i < minimal_nineteen_digit_integer) && (p != frac_end)) { ++ i = i * 10 + uint64_t(*p - UC('0')); ++ ++p; ++ } ++ exponent = answer.fraction.ptr - p + exp_number; ++ } ++ // We have now corrected both exponent and i, to a truncated value ++ } ++ } ++ answer.exponent = exponent; ++ answer.mantissa = i; ++ return answer; ++} ++ ++template ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 from_chars_result_t ++parse_int_string(UC const *p, UC const *pend, T &value, int base) { ++ from_chars_result_t answer; ++ ++ UC const *const first = p; ++ ++ bool negative = (*p == UC('-')); ++ if (!std::is_signed::value && negative) { ++ answer.ec = std::errc::invalid_argument; ++ answer.ptr = first; ++ return answer; ++ } ++#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default ++ if ((*p == UC('-')) || (*p == UC('+'))) { ++#else ++ if (*p == UC('-')) { ++#endif ++ ++p; ++ } ++ ++ UC const *const start_num = p; ++ ++ while (p != pend && *p == UC('0')) { ++ ++p; ++ } ++ ++ const bool has_leading_zeros = p > start_num; ++ ++ UC const *const start_digits = p; ++ ++ uint64_t i = 0; ++ if (base == 10) { ++ loop_parse_if_eight_digits(p, pend, i); // use SIMD if possible ++ } ++ while (p != pend) { ++ uint8_t digit = ch_to_digit(*p); ++ if (digit >= base) { ++ break; ++ } ++ i = uint64_t(base) * i + digit; // might overflow, check this later ++ p++; ++ } ++ ++ size_t digit_count = size_t(p - start_digits); ++ ++ if (digit_count == 0) { ++ if (has_leading_zeros) { ++ value = 0; ++ answer.ec = std::errc(); ++ answer.ptr = p; ++ } else { ++ answer.ec = std::errc::invalid_argument; ++ answer.ptr = first; ++ } ++ return answer; ++ } ++ ++ answer.ptr = p; ++ ++ // check u64 overflow ++ size_t max_digits = max_digits_u64(base); ++ if (digit_count > max_digits) { ++ answer.ec = std::errc::result_out_of_range; ++ return answer; ++ } ++ // this check can be eliminated for all other types, but they will all require ++ // a max_digits(base) equivalent ++ if (digit_count == max_digits && i < min_safe_u64(base)) { ++ answer.ec = std::errc::result_out_of_range; ++ return answer; ++ } ++ ++ // check other types overflow ++ if (!std::is_same::value) { ++ if (i > uint64_t(std::numeric_limits::max()) + uint64_t(negative)) { ++ answer.ec = std::errc::result_out_of_range; ++ return answer; ++ } ++ } ++ ++ if (negative) { ++#ifdef FASTFLOAT_VISUAL_STUDIO ++#pragma warning(push) ++#pragma warning(disable : 4146) ++#endif ++ // this weird workaround is required because: ++ // - converting unsigned to signed when its value is greater than signed max ++ // is UB pre-C++23. ++ // - reinterpret_casting (~i + 1) would work, but it is not constexpr ++ // this is always optimized into a neg instruction (note: T is an integer ++ // type) ++ value = T(-std::numeric_limits::max() - ++ T(i - uint64_t(std::numeric_limits::max()))); ++#ifdef FASTFLOAT_VISUAL_STUDIO ++#pragma warning(pop) ++#endif ++ } else { ++ value = T(i); ++ } ++ ++ answer.ec = std::errc(); ++ return answer; ++} ++ ++} // namespace fast_float ++ ++#endif ++ ++#ifndef FASTFLOAT_FAST_TABLE_H ++#define FASTFLOAT_FAST_TABLE_H ++ ++#include ++ ++namespace fast_float { ++ ++/** ++ * When mapping numbers from decimal to binary, ++ * we go from w * 10^q to m * 2^p but we have ++ * 10^q = 5^q * 2^q, so effectively ++ * we are trying to match ++ * w * 2^q * 5^q to m * 2^p. Thus the powers of two ++ * are not a concern since they can be represented ++ * exactly using the binary notation, only the powers of five ++ * affect the binary significand. ++ */ ++ ++/** ++ * The smallest non-zero float (binary64) is 2^-1074. ++ * We take as input numbers of the form w x 10^q where w < 2^64. ++ * We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076. ++ * However, we have that ++ * (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^-1074. ++ * Thus it is possible for a number of the form w * 10^-342 where ++ * w is a 64-bit value to be a non-zero floating-point number. ++ ********* ++ * Any number of form w * 10^309 where w>= 1 is going to be ++ * infinite in binary64 so we never need to worry about powers ++ * of 5 greater than 308. ++ */ ++template struct powers_template { ++ ++ constexpr static int smallest_power_of_five = ++ binary_format::smallest_power_of_ten(); ++ constexpr static int largest_power_of_five = ++ binary_format::largest_power_of_ten(); ++ constexpr static int number_of_entries = ++ 2 * (largest_power_of_five - smallest_power_of_five + 1); ++ // Powers of five from 5^-342 all the way to 5^308 rounded toward one. ++ constexpr static uint64_t power_of_five_128[number_of_entries] = { ++ 0xeef453d6923bd65a, 0x113faa2906a13b3f, ++ 0x9558b4661b6565f8, 0x4ac7ca59a424c507, ++ 0xbaaee17fa23ebf76, 0x5d79bcf00d2df649, ++ 0xe95a99df8ace6f53, 0xf4d82c2c107973dc, ++ 0x91d8a02bb6c10594, 0x79071b9b8a4be869, ++ 0xb64ec836a47146f9, 0x9748e2826cdee284, ++ 0xe3e27a444d8d98b7, 0xfd1b1b2308169b25, ++ 0x8e6d8c6ab0787f72, 0xfe30f0f5e50e20f7, ++ 0xb208ef855c969f4f, 0xbdbd2d335e51a935, ++ 0xde8b2b66b3bc4723, 0xad2c788035e61382, ++ 0x8b16fb203055ac76, 0x4c3bcb5021afcc31, ++ 0xaddcb9e83c6b1793, 0xdf4abe242a1bbf3d, ++ 0xd953e8624b85dd78, 0xd71d6dad34a2af0d, ++ 0x87d4713d6f33aa6b, 0x8672648c40e5ad68, ++ 0xa9c98d8ccb009506, 0x680efdaf511f18c2, ++ 0xd43bf0effdc0ba48, 0x212bd1b2566def2, ++ 0x84a57695fe98746d, 0x14bb630f7604b57, ++ 0xa5ced43b7e3e9188, 0x419ea3bd35385e2d, ++ 0xcf42894a5dce35ea, 0x52064cac828675b9, ++ 0x818995ce7aa0e1b2, 0x7343efebd1940993, ++ 0xa1ebfb4219491a1f, 0x1014ebe6c5f90bf8, ++ 0xca66fa129f9b60a6, 0xd41a26e077774ef6, ++ 0xfd00b897478238d0, 0x8920b098955522b4, ++ 0x9e20735e8cb16382, 0x55b46e5f5d5535b0, ++ 0xc5a890362fddbc62, 0xeb2189f734aa831d, ++ 0xf712b443bbd52b7b, 0xa5e9ec7501d523e4, ++ 0x9a6bb0aa55653b2d, 0x47b233c92125366e, ++ 0xc1069cd4eabe89f8, 0x999ec0bb696e840a, ++ 0xf148440a256e2c76, 0xc00670ea43ca250d, ++ 0x96cd2a865764dbca, 0x380406926a5e5728, ++ 0xbc807527ed3e12bc, 0xc605083704f5ecf2, ++ 0xeba09271e88d976b, 0xf7864a44c633682e, ++ 0x93445b8731587ea3, 0x7ab3ee6afbe0211d, ++ 0xb8157268fdae9e4c, 0x5960ea05bad82964, ++ 0xe61acf033d1a45df, 0x6fb92487298e33bd, ++ 0x8fd0c16206306bab, 0xa5d3b6d479f8e056, ++ 0xb3c4f1ba87bc8696, 0x8f48a4899877186c, ++ 0xe0b62e2929aba83c, 0x331acdabfe94de87, ++ 0x8c71dcd9ba0b4925, 0x9ff0c08b7f1d0b14, ++ 0xaf8e5410288e1b6f, 0x7ecf0ae5ee44dd9, ++ 0xdb71e91432b1a24a, 0xc9e82cd9f69d6150, ++ 0x892731ac9faf056e, 0xbe311c083a225cd2, ++ 0xab70fe17c79ac6ca, 0x6dbd630a48aaf406, ++ 0xd64d3d9db981787d, 0x92cbbccdad5b108, ++ 0x85f0468293f0eb4e, 0x25bbf56008c58ea5, ++ 0xa76c582338ed2621, 0xaf2af2b80af6f24e, ++ 0xd1476e2c07286faa, 0x1af5af660db4aee1, ++ 0x82cca4db847945ca, 0x50d98d9fc890ed4d, ++ 0xa37fce126597973c, 0xe50ff107bab528a0, ++ 0xcc5fc196fefd7d0c, 0x1e53ed49a96272c8, ++ 0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7a, ++ 0x9faacf3df73609b1, 0x77b191618c54e9ac, ++ 0xc795830d75038c1d, 0xd59df5b9ef6a2417, ++ 0xf97ae3d0d2446f25, 0x4b0573286b44ad1d, ++ 0x9becce62836ac577, 0x4ee367f9430aec32, ++ 0xc2e801fb244576d5, 0x229c41f793cda73f, ++ 0xf3a20279ed56d48a, 0x6b43527578c1110f, ++ 0x9845418c345644d6, 0x830a13896b78aaa9, ++ 0xbe5691ef416bd60c, 0x23cc986bc656d553, ++ 0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa8, ++ 0x94b3a202eb1c3f39, 0x7bf7d71432f3d6a9, ++ 0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc53, ++ 0xe858ad248f5c22c9, 0xd1b3400f8f9cff68, ++ 0x91376c36d99995be, 0x23100809b9c21fa1, ++ 0xb58547448ffffb2d, 0xabd40a0c2832a78a, ++ 0xe2e69915b3fff9f9, 0x16c90c8f323f516c, ++ 0x8dd01fad907ffc3b, 0xae3da7d97f6792e3, ++ 0xb1442798f49ffb4a, 0x99cd11cfdf41779c, ++ 0xdd95317f31c7fa1d, 0x40405643d711d583, ++ 0x8a7d3eef7f1cfc52, 0x482835ea666b2572, ++ 0xad1c8eab5ee43b66, 0xda3243650005eecf, ++ 0xd863b256369d4a40, 0x90bed43e40076a82, ++ 0x873e4f75e2224e68, 0x5a7744a6e804a291, ++ 0xa90de3535aaae202, 0x711515d0a205cb36, ++ 0xd3515c2831559a83, 0xd5a5b44ca873e03, ++ 0x8412d9991ed58091, 0xe858790afe9486c2, ++ 0xa5178fff668ae0b6, 0x626e974dbe39a872, ++ 0xce5d73ff402d98e3, 0xfb0a3d212dc8128f, ++ 0x80fa687f881c7f8e, 0x7ce66634bc9d0b99, ++ 0xa139029f6a239f72, 0x1c1fffc1ebc44e80, ++ 0xc987434744ac874e, 0xa327ffb266b56220, ++ 0xfbe9141915d7a922, 0x4bf1ff9f0062baa8, ++ 0x9d71ac8fada6c9b5, 0x6f773fc3603db4a9, ++ 0xc4ce17b399107c22, 0xcb550fb4384d21d3, ++ 0xf6019da07f549b2b, 0x7e2a53a146606a48, ++ 0x99c102844f94e0fb, 0x2eda7444cbfc426d, ++ 0xc0314325637a1939, 0xfa911155fefb5308, ++ 0xf03d93eebc589f88, 0x793555ab7eba27ca, ++ 0x96267c7535b763b5, 0x4bc1558b2f3458de, ++ 0xbbb01b9283253ca2, 0x9eb1aaedfb016f16, ++ 0xea9c227723ee8bcb, 0x465e15a979c1cadc, ++ 0x92a1958a7675175f, 0xbfacd89ec191ec9, ++ 0xb749faed14125d36, 0xcef980ec671f667b, ++ 0xe51c79a85916f484, 0x82b7e12780e7401a, ++ 0x8f31cc0937ae58d2, 0xd1b2ecb8b0908810, ++ 0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa15, ++ 0xdfbdcece67006ac9, 0x67a791e093e1d49a, ++ 0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e0, ++ 0xaecc49914078536d, 0x58fae9f773886e18, ++ 0xda7f5bf590966848, 0xaf39a475506a899e, ++ 0x888f99797a5e012d, 0x6d8406c952429603, ++ 0xaab37fd7d8f58178, 0xc8e5087ba6d33b83, ++ 0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a64, ++ 0x855c3be0a17fcd26, 0x5cf2eea09a55067f, ++ 0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481e, ++ 0xd0601d8efc57b08b, 0xf13b94daf124da26, ++ 0x823c12795db6ce57, 0x76c53d08d6b70858, ++ 0xa2cb1717b52481ed, 0x54768c4b0c64ca6e, ++ 0xcb7ddcdda26da268, 0xa9942f5dcf7dfd09, ++ 0xfe5d54150b090b02, 0xd3f93b35435d7c4c, ++ 0x9efa548d26e5a6e1, 0xc47bc5014a1a6daf, ++ 0xc6b8e9b0709f109a, 0x359ab6419ca1091b, ++ 0xf867241c8cc6d4c0, 0xc30163d203c94b62, ++ 0x9b407691d7fc44f8, 0x79e0de63425dcf1d, ++ 0xc21094364dfb5636, 0x985915fc12f542e4, ++ 0xf294b943e17a2bc4, 0x3e6f5b7b17b2939d, ++ 0x979cf3ca6cec5b5a, 0xa705992ceecf9c42, ++ 0xbd8430bd08277231, 0x50c6ff782a838353, ++ 0xece53cec4a314ebd, 0xa4f8bf5635246428, ++ 0x940f4613ae5ed136, 0x871b7795e136be99, ++ 0xb913179899f68584, 0x28e2557b59846e3f, ++ 0xe757dd7ec07426e5, 0x331aeada2fe589cf, ++ 0x9096ea6f3848984f, 0x3ff0d2c85def7621, ++ 0xb4bca50b065abe63, 0xfed077a756b53a9, ++ 0xe1ebce4dc7f16dfb, 0xd3e8495912c62894, ++ 0x8d3360f09cf6e4bd, 0x64712dd7abbbd95c, ++ 0xb080392cc4349dec, 0xbd8d794d96aacfb3, ++ 0xdca04777f541c567, 0xecf0d7a0fc5583a0, ++ 0x89e42caaf9491b60, 0xf41686c49db57244, ++ 0xac5d37d5b79b6239, 0x311c2875c522ced5, ++ 0xd77485cb25823ac7, 0x7d633293366b828b, ++ 0x86a8d39ef77164bc, 0xae5dff9c02033197, ++ 0xa8530886b54dbdeb, 0xd9f57f830283fdfc, ++ 0xd267caa862a12d66, 0xd072df63c324fd7b, ++ 0x8380dea93da4bc60, 0x4247cb9e59f71e6d, ++ 0xa46116538d0deb78, 0x52d9be85f074e608, ++ 0xcd795be870516656, 0x67902e276c921f8b, ++ 0x806bd9714632dff6, 0xba1cd8a3db53b6, ++ 0xa086cfcd97bf97f3, 0x80e8a40eccd228a4, ++ 0xc8a883c0fdaf7df0, 0x6122cd128006b2cd, ++ 0xfad2a4b13d1b5d6c, 0x796b805720085f81, ++ 0x9cc3a6eec6311a63, 0xcbe3303674053bb0, ++ 0xc3f490aa77bd60fc, 0xbedbfc4411068a9c, ++ 0xf4f1b4d515acb93b, 0xee92fb5515482d44, ++ 0x991711052d8bf3c5, 0x751bdd152d4d1c4a, ++ 0xbf5cd54678eef0b6, 0xd262d45a78a0635d, ++ 0xef340a98172aace4, 0x86fb897116c87c34, ++ 0x9580869f0e7aac0e, 0xd45d35e6ae3d4da0, ++ 0xbae0a846d2195712, 0x8974836059cca109, ++ 0xe998d258869facd7, 0x2bd1a438703fc94b, ++ 0x91ff83775423cc06, 0x7b6306a34627ddcf, ++ 0xb67f6455292cbf08, 0x1a3bc84c17b1d542, ++ 0xe41f3d6a7377eeca, 0x20caba5f1d9e4a93, ++ 0x8e938662882af53e, 0x547eb47b7282ee9c, ++ 0xb23867fb2a35b28d, 0xe99e619a4f23aa43, ++ 0xdec681f9f4c31f31, 0x6405fa00e2ec94d4, ++ 0x8b3c113c38f9f37e, 0xde83bc408dd3dd04, ++ 0xae0b158b4738705e, 0x9624ab50b148d445, ++ 0xd98ddaee19068c76, 0x3badd624dd9b0957, ++ 0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d6, ++ 0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4c, ++ 0xd47487cc8470652b, 0x7647c3200069671f, ++ 0x84c8d4dfd2c63f3b, 0x29ecd9f40041e073, ++ 0xa5fb0a17c777cf09, 0xf468107100525890, ++ 0xcf79cc9db955c2cc, 0x7182148d4066eeb4, ++ 0x81ac1fe293d599bf, 0xc6f14cd848405530, ++ 0xa21727db38cb002f, 0xb8ada00e5a506a7c, ++ 0xca9cf1d206fdc03b, 0xa6d90811f0e4851c, ++ 0xfd442e4688bd304a, 0x908f4a166d1da663, ++ 0x9e4a9cec15763e2e, 0x9a598e4e043287fe, ++ 0xc5dd44271ad3cdba, 0x40eff1e1853f29fd, ++ 0xf7549530e188c128, 0xd12bee59e68ef47c, ++ 0x9a94dd3e8cf578b9, 0x82bb74f8301958ce, ++ 0xc13a148e3032d6e7, 0xe36a52363c1faf01, ++ 0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac1, ++ 0x96f5600f15a7b7e5, 0x29ab103a5ef8c0b9, ++ 0xbcb2b812db11a5de, 0x7415d448f6b6f0e7, ++ 0xebdf661791d60f56, 0x111b495b3464ad21, ++ 0x936b9fcebb25c995, 0xcab10dd900beec34, ++ 0xb84687c269ef3bfb, 0x3d5d514f40eea742, ++ 0xe65829b3046b0afa, 0xcb4a5a3112a5112, ++ 0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ab, ++ 0xb3f4e093db73a093, 0x59ed216765690f56, ++ 0xe0f218b8d25088b8, 0x306869c13ec3532c, ++ 0x8c974f7383725573, 0x1e414218c73a13fb, ++ 0xafbd2350644eeacf, 0xe5d1929ef90898fa, ++ 0xdbac6c247d62a583, 0xdf45f746b74abf39, ++ 0x894bc396ce5da772, 0x6b8bba8c328eb783, ++ 0xab9eb47c81f5114f, 0x66ea92f3f326564, ++ 0xd686619ba27255a2, 0xc80a537b0efefebd, ++ 0x8613fd0145877585, 0xbd06742ce95f5f36, ++ 0xa798fc4196e952e7, 0x2c48113823b73704, ++ 0xd17f3b51fca3a7a0, 0xf75a15862ca504c5, ++ 0x82ef85133de648c4, 0x9a984d73dbe722fb, ++ 0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebba, ++ 0xcc963fee10b7d1b3, 0x318df905079926a8, ++ 0xffbbcfe994e5c61f, 0xfdf17746497f7052, ++ 0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa633, ++ 0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc0, ++ 0xf9bd690a1b68637b, 0x3dfdce7aa3c673b0, ++ 0x9c1661a651213e2d, 0x6bea10ca65c084e, ++ 0xc31bfa0fe5698db8, 0x486e494fcff30a62, ++ 0xf3e2f893dec3f126, 0x5a89dba3c3efccfa, ++ 0x986ddb5c6b3a76b7, 0xf89629465a75e01c, ++ 0xbe89523386091465, 0xf6bbb397f1135823, ++ 0xee2ba6c0678b597f, 0x746aa07ded582e2c, ++ 0x94db483840b717ef, 0xa8c2a44eb4571cdc, ++ 0xba121a4650e4ddeb, 0x92f34d62616ce413, ++ 0xe896a0d7e51e1566, 0x77b020baf9c81d17, ++ 0x915e2486ef32cd60, 0xace1474dc1d122e, ++ 0xb5b5ada8aaff80b8, 0xd819992132456ba, ++ 0xe3231912d5bf60e6, 0x10e1fff697ed6c69, ++ 0x8df5efabc5979c8f, 0xca8d3ffa1ef463c1, ++ 0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb2, ++ 0xddd0467c64bce4a0, 0xac7cb3f6d05ddbde, ++ 0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96b, ++ 0xad4ab7112eb3929d, 0x86c16c98d2c953c6, ++ 0xd89d64d57a607744, 0xe871c7bf077ba8b7, ++ 0x87625f056c7c4a8b, 0x11471cd764ad4972, ++ 0xa93af6c6c79b5d2d, 0xd598e40d3dd89bcf, ++ 0xd389b47879823479, 0x4aff1d108d4ec2c3, ++ 0x843610cb4bf160cb, 0xcedf722a585139ba, ++ 0xa54394fe1eedb8fe, 0xc2974eb4ee658828, ++ 0xce947a3da6a9273e, 0x733d226229feea32, ++ 0x811ccc668829b887, 0x806357d5a3f525f, ++ 0xa163ff802a3426a8, 0xca07c2dcb0cf26f7, ++ 0xc9bcff6034c13052, 0xfc89b393dd02f0b5, ++ 0xfc2c3f3841f17c67, 0xbbac2078d443ace2, ++ 0x9d9ba7832936edc0, 0xd54b944b84aa4c0d, ++ 0xc5029163f384a931, 0xa9e795e65d4df11, ++ 0xf64335bcf065d37d, 0x4d4617b5ff4a16d5, ++ 0x99ea0196163fa42e, 0x504bced1bf8e4e45, ++ 0xc06481fb9bcf8d39, 0xe45ec2862f71e1d6, ++ 0xf07da27a82c37088, 0x5d767327bb4e5a4c, ++ 0x964e858c91ba2655, 0x3a6a07f8d510f86f, ++ 0xbbe226efb628afea, 0x890489f70a55368b, ++ 0xeadab0aba3b2dbe5, 0x2b45ac74ccea842e, ++ 0x92c8ae6b464fc96f, 0x3b0b8bc90012929d, ++ 0xb77ada0617e3bbcb, 0x9ce6ebb40173744, ++ 0xe55990879ddcaabd, 0xcc420a6a101d0515, ++ 0x8f57fa54c2a9eab6, 0x9fa946824a12232d, ++ 0xb32df8e9f3546564, 0x47939822dc96abf9, ++ 0xdff9772470297ebd, 0x59787e2b93bc56f7, ++ 0x8bfbea76c619ef36, 0x57eb4edb3c55b65a, ++ 0xaefae51477a06b03, 0xede622920b6b23f1, ++ 0xdab99e59958885c4, 0xe95fab368e45eced, ++ 0x88b402f7fd75539b, 0x11dbcb0218ebb414, ++ 0xaae103b5fcd2a881, 0xd652bdc29f26a119, ++ 0xd59944a37c0752a2, 0x4be76d3346f0495f, ++ 0x857fcae62d8493a5, 0x6f70a4400c562ddb, ++ 0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb952, ++ 0xd097ad07a71f26b2, 0x7e2000a41346a7a7, ++ 0x825ecc24c873782f, 0x8ed400668c0c28c8, ++ 0xa2f67f2dfa90563b, 0x728900802f0f32fa, ++ 0xcbb41ef979346bca, 0x4f2b40a03ad2ffb9, ++ 0xfea126b7d78186bc, 0xe2f610c84987bfa8, ++ 0x9f24b832e6b0f436, 0xdd9ca7d2df4d7c9, ++ 0xc6ede63fa05d3143, 0x91503d1c79720dbb, ++ 0xf8a95fcf88747d94, 0x75a44c6397ce912a, ++ 0x9b69dbe1b548ce7c, 0xc986afbe3ee11aba, ++ 0xc24452da229b021b, 0xfbe85badce996168, ++ 0xf2d56790ab41c2a2, 0xfae27299423fb9c3, ++ 0x97c560ba6b0919a5, 0xdccd879fc967d41a, ++ 0xbdb6b8e905cb600f, 0x5400e987bbc1c920, ++ 0xed246723473e3813, 0x290123e9aab23b68, ++ 0x9436c0760c86e30b, 0xf9a0b6720aaf6521, ++ 0xb94470938fa89bce, 0xf808e40e8d5b3e69, ++ 0xe7958cb87392c2c2, 0xb60b1d1230b20e04, ++ 0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c2, ++ 0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af3, ++ 0xe2280b6c20dd5232, 0x25c6da63c38de1b0, ++ 0x8d590723948a535f, 0x579c487e5a38ad0e, ++ 0xb0af48ec79ace837, 0x2d835a9df0c6d851, ++ 0xdcdb1b2798182244, 0xf8e431456cf88e65, ++ 0x8a08f0f8bf0f156b, 0x1b8e9ecb641b58ff, ++ 0xac8b2d36eed2dac5, 0xe272467e3d222f3f, ++ 0xd7adf884aa879177, 0x5b0ed81dcc6abb0f, ++ 0x86ccbb52ea94baea, 0x98e947129fc2b4e9, ++ 0xa87fea27a539e9a5, 0x3f2398d747b36224, ++ 0xd29fe4b18e88640e, 0x8eec7f0d19a03aad, ++ 0x83a3eeeef9153e89, 0x1953cf68300424ac, ++ 0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd7, ++ 0xcdb02555653131b6, 0x3792f412cb06794d, ++ 0x808e17555f3ebf11, 0xe2bbd88bbee40bd0, ++ 0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec4, ++ 0xc8de047564d20a8b, 0xf245825a5a445275, ++ 0xfb158592be068d2e, 0xeed6e2f0f0d56712, ++ 0x9ced737bb6c4183d, 0x55464dd69685606b, ++ 0xc428d05aa4751e4c, 0xaa97e14c3c26b886, ++ 0xf53304714d9265df, 0xd53dd99f4b3066a8, ++ 0x993fe2c6d07b7fab, 0xe546a8038efe4029, ++ 0xbf8fdb78849a5f96, 0xde98520472bdd033, ++ 0xef73d256a5c0f77c, 0x963e66858f6d4440, ++ 0x95a8637627989aad, 0xdde7001379a44aa8, ++ 0xbb127c53b17ec159, 0x5560c018580d5d52, ++ 0xe9d71b689dde71af, 0xaab8f01e6e10b4a6, ++ 0x9226712162ab070d, 0xcab3961304ca70e8, ++ 0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d22, ++ 0xe45c10c42a2b3b05, 0x8cb89a7db77c506a, ++ 0x8eb98a7a9a5b04e3, 0x77f3608e92adb242, ++ 0xb267ed1940f1c61c, 0x55f038b237591ed3, ++ 0xdf01e85f912e37a3, 0x6b6c46dec52f6688, ++ 0x8b61313bbabce2c6, 0x2323ac4b3b3da015, ++ 0xae397d8aa96c1b77, 0xabec975e0a0d081a, ++ 0xd9c7dced53c72255, 0x96e7bd358c904a21, ++ 0x881cea14545c7575, 0x7e50d64177da2e54, ++ 0xaa242499697392d2, 0xdde50bd1d5d0b9e9, ++ 0xd4ad2dbfc3d07787, 0x955e4ec64b44e864, ++ 0x84ec3c97da624ab4, 0xbd5af13bef0b113e, ++ 0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58e, ++ 0xcfb11ead453994ba, 0x67de18eda5814af2, ++ 0x81ceb32c4b43fcf4, 0x80eacf948770ced7, ++ 0xa2425ff75e14fc31, 0xa1258379a94d028d, ++ 0xcad2f7f5359a3b3e, 0x96ee45813a04330, ++ 0xfd87b5f28300ca0d, 0x8bca9d6e188853fc, ++ 0x9e74d1b791e07e48, 0x775ea264cf55347e, ++ 0xc612062576589dda, 0x95364afe032a819e, ++ 0xf79687aed3eec551, 0x3a83ddbd83f52205, ++ 0x9abe14cd44753b52, 0xc4926a9672793543, ++ 0xc16d9a0095928a27, 0x75b7053c0f178294, ++ 0xf1c90080baf72cb1, 0x5324c68b12dd6339, ++ 0x971da05074da7bee, 0xd3f6fc16ebca5e04, ++ 0xbce5086492111aea, 0x88f4bb1ca6bcf585, ++ 0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6, ++ 0x9392ee8e921d5d07, 0x3aff322e62439fd0, ++ 0xb877aa3236a4b449, 0x9befeb9fad487c3, ++ 0xe69594bec44de15b, 0x4c2ebe687989a9b4, ++ 0x901d7cf73ab0acd9, 0xf9d37014bf60a11, ++ 0xb424dc35095cd80f, 0x538484c19ef38c95, ++ 0xe12e13424bb40e13, 0x2865a5f206b06fba, ++ 0x8cbccc096f5088cb, 0xf93f87b7442e45d4, ++ 0xafebff0bcb24aafe, 0xf78f69a51539d749, ++ 0xdbe6fecebdedd5be, 0xb573440e5a884d1c, ++ 0x89705f4136b4a597, 0x31680a88f8953031, ++ 0xabcc77118461cefc, 0xfdc20d2b36ba7c3e, ++ 0xd6bf94d5e57a42bc, 0x3d32907604691b4d, ++ 0x8637bd05af6c69b5, 0xa63f9a49c2c1b110, ++ 0xa7c5ac471b478423, 0xfcf80dc33721d54, ++ 0xd1b71758e219652b, 0xd3c36113404ea4a9, ++ 0x83126e978d4fdf3b, 0x645a1cac083126ea, ++ 0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4, ++ 0xcccccccccccccccc, 0xcccccccccccccccd, ++ 0x8000000000000000, 0x0, ++ 0xa000000000000000, 0x0, ++ 0xc800000000000000, 0x0, ++ 0xfa00000000000000, 0x0, ++ 0x9c40000000000000, 0x0, ++ 0xc350000000000000, 0x0, ++ 0xf424000000000000, 0x0, ++ 0x9896800000000000, 0x0, ++ 0xbebc200000000000, 0x0, ++ 0xee6b280000000000, 0x0, ++ 0x9502f90000000000, 0x0, ++ 0xba43b74000000000, 0x0, ++ 0xe8d4a51000000000, 0x0, ++ 0x9184e72a00000000, 0x0, ++ 0xb5e620f480000000, 0x0, ++ 0xe35fa931a0000000, 0x0, ++ 0x8e1bc9bf04000000, 0x0, ++ 0xb1a2bc2ec5000000, 0x0, ++ 0xde0b6b3a76400000, 0x0, ++ 0x8ac7230489e80000, 0x0, ++ 0xad78ebc5ac620000, 0x0, ++ 0xd8d726b7177a8000, 0x0, ++ 0x878678326eac9000, 0x0, ++ 0xa968163f0a57b400, 0x0, ++ 0xd3c21bcecceda100, 0x0, ++ 0x84595161401484a0, 0x0, ++ 0xa56fa5b99019a5c8, 0x0, ++ 0xcecb8f27f4200f3a, 0x0, ++ 0x813f3978f8940984, 0x4000000000000000, ++ 0xa18f07d736b90be5, 0x5000000000000000, ++ 0xc9f2c9cd04674ede, 0xa400000000000000, ++ 0xfc6f7c4045812296, 0x4d00000000000000, ++ 0x9dc5ada82b70b59d, 0xf020000000000000, ++ 0xc5371912364ce305, 0x6c28000000000000, ++ 0xf684df56c3e01bc6, 0xc732000000000000, ++ 0x9a130b963a6c115c, 0x3c7f400000000000, ++ 0xc097ce7bc90715b3, 0x4b9f100000000000, ++ 0xf0bdc21abb48db20, 0x1e86d40000000000, ++ 0x96769950b50d88f4, 0x1314448000000000, ++ 0xbc143fa4e250eb31, 0x17d955a000000000, ++ 0xeb194f8e1ae525fd, 0x5dcfab0800000000, ++ 0x92efd1b8d0cf37be, 0x5aa1cae500000000, ++ 0xb7abc627050305ad, 0xf14a3d9e40000000, ++ 0xe596b7b0c643c719, 0x6d9ccd05d0000000, ++ 0x8f7e32ce7bea5c6f, 0xe4820023a2000000, ++ 0xb35dbf821ae4f38b, 0xdda2802c8a800000, ++ 0xe0352f62a19e306e, 0xd50b2037ad200000, ++ 0x8c213d9da502de45, 0x4526f422cc340000, ++ 0xaf298d050e4395d6, 0x9670b12b7f410000, ++ 0xdaf3f04651d47b4c, 0x3c0cdd765f114000, ++ 0x88d8762bf324cd0f, 0xa5880a69fb6ac800, ++ 0xab0e93b6efee0053, 0x8eea0d047a457a00, ++ 0xd5d238a4abe98068, 0x72a4904598d6d880, ++ 0x85a36366eb71f041, 0x47a6da2b7f864750, ++ 0xa70c3c40a64e6c51, 0x999090b65f67d924, ++ 0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d, ++ 0x82818f1281ed449f, 0xbff8f10e7a8921a4, ++ 0xa321f2d7226895c7, 0xaff72d52192b6a0d, ++ 0xcbea6f8ceb02bb39, 0x9bf4f8a69f764490, ++ 0xfee50b7025c36a08, 0x2f236d04753d5b4, ++ 0x9f4f2726179a2245, 0x1d762422c946590, ++ 0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef5, ++ 0xf8ebad2b84e0d58b, 0xd2e0898765a7deb2, ++ 0x9b934c3b330c8577, 0x63cc55f49f88eb2f, ++ 0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fb, ++ 0xf316271c7fc3908a, 0x8bef464e3945ef7a, ++ 0x97edd871cfda3a56, 0x97758bf0e3cbb5ac, ++ 0xbde94e8e43d0c8ec, 0x3d52eeed1cbea317, ++ 0xed63a231d4c4fb27, 0x4ca7aaa863ee4bdd, ++ 0x945e455f24fb1cf8, 0x8fe8caa93e74ef6a, ++ 0xb975d6b6ee39e436, 0xb3e2fd538e122b44, ++ 0xe7d34c64a9c85d44, 0x60dbbca87196b616, ++ 0x90e40fbeea1d3a4a, 0xbc8955e946fe31cd, ++ 0xb51d13aea4a488dd, 0x6babab6398bdbe41, ++ 0xe264589a4dcdab14, 0xc696963c7eed2dd1, ++ 0x8d7eb76070a08aec, 0xfc1e1de5cf543ca2, ++ 0xb0de65388cc8ada8, 0x3b25a55f43294bcb, ++ 0xdd15fe86affad912, 0x49ef0eb713f39ebe, ++ 0x8a2dbf142dfcc7ab, 0x6e3569326c784337, ++ 0xacb92ed9397bf996, 0x49c2c37f07965404, ++ 0xd7e77a8f87daf7fb, 0xdc33745ec97be906, ++ 0x86f0ac99b4e8dafd, 0x69a028bb3ded71a3, ++ 0xa8acd7c0222311bc, 0xc40832ea0d68ce0c, ++ 0xd2d80db02aabd62b, 0xf50a3fa490c30190, ++ 0x83c7088e1aab65db, 0x792667c6da79e0fa, ++ 0xa4b8cab1a1563f52, 0x577001b891185938, ++ 0xcde6fd5e09abcf26, 0xed4c0226b55e6f86, ++ 0x80b05e5ac60b6178, 0x544f8158315b05b4, ++ 0xa0dc75f1778e39d6, 0x696361ae3db1c721, ++ 0xc913936dd571c84c, 0x3bc3a19cd1e38e9, ++ 0xfb5878494ace3a5f, 0x4ab48a04065c723, ++ 0x9d174b2dcec0e47b, 0x62eb0d64283f9c76, ++ 0xc45d1df942711d9a, 0x3ba5d0bd324f8394, ++ 0xf5746577930d6500, 0xca8f44ec7ee36479, ++ 0x9968bf6abbe85f20, 0x7e998b13cf4e1ecb, ++ 0xbfc2ef456ae276e8, 0x9e3fedd8c321a67e, ++ 0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101e, ++ 0x95d04aee3b80ece5, 0xbba1f1d158724a12, ++ 0xbb445da9ca61281f, 0x2a8a6e45ae8edc97, ++ 0xea1575143cf97226, 0xf52d09d71a3293bd, ++ 0x924d692ca61be758, 0x593c2626705f9c56, ++ 0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836c, ++ 0xe498f455c38b997a, 0xb6dfb9c0f956447, ++ 0x8edf98b59a373fec, 0x4724bd4189bd5eac, ++ 0xb2977ee300c50fe7, 0x58edec91ec2cb657, ++ 0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ed, ++ 0x8b865b215899f46c, 0xbd79e0d20082ee74, ++ 0xae67f1e9aec07187, 0xecd8590680a3aa11, ++ 0xda01ee641a708de9, 0xe80e6f4820cc9495, ++ 0x884134fe908658b2, 0x3109058d147fdcdd, ++ 0xaa51823e34a7eede, 0xbd4b46f0599fd415, ++ 0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91a, ++ 0x850fadc09923329e, 0x3e2cf6bc604ddb0, ++ 0xa6539930bf6bff45, 0x84db8346b786151c, ++ 0xcfe87f7cef46ff16, 0xe612641865679a63, ++ 0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07e, ++ 0xa26da3999aef7749, 0xe3be5e330f38f09d, ++ 0xcb090c8001ab551c, 0x5cadf5bfd3072cc5, ++ 0xfdcb4fa002162a63, 0x73d9732fc7c8f7f6, ++ 0x9e9f11c4014dda7e, 0x2867e7fddcdd9afa, ++ 0xc646d63501a1511d, 0xb281e1fd541501b8, ++ 0xf7d88bc24209a565, 0x1f225a7ca91a4226, ++ 0x9ae757596946075f, 0x3375788de9b06958, ++ 0xc1a12d2fc3978937, 0x52d6b1641c83ae, ++ 0xf209787bb47d6b84, 0xc0678c5dbd23a49a, ++ 0x9745eb4d50ce6332, 0xf840b7ba963646e0, ++ 0xbd176620a501fbff, 0xb650e5a93bc3d898, ++ 0xec5d3fa8ce427aff, 0xa3e51f138ab4cebe, ++ 0x93ba47c980e98cdf, 0xc66f336c36b10137, ++ 0xb8a8d9bbe123f017, 0xb80b0047445d4184, ++ 0xe6d3102ad96cec1d, 0xa60dc059157491e5, ++ 0x9043ea1ac7e41392, 0x87c89837ad68db2f, ++ 0xb454e4a179dd1877, 0x29babe4598c311fb, ++ 0xe16a1dc9d8545e94, 0xf4296dd6fef3d67a, ++ 0x8ce2529e2734bb1d, 0x1899e4a65f58660c, ++ 0xb01ae745b101e9e4, 0x5ec05dcff72e7f8f, ++ 0xdc21a1171d42645d, 0x76707543f4fa1f73, ++ 0x899504ae72497eba, 0x6a06494a791c53a8, ++ 0xabfa45da0edbde69, 0x487db9d17636892, ++ 0xd6f8d7509292d603, 0x45a9d2845d3c42b6, ++ 0x865b86925b9bc5c2, 0xb8a2392ba45a9b2, ++ 0xa7f26836f282b732, 0x8e6cac7768d7141e, ++ 0xd1ef0244af2364ff, 0x3207d795430cd926, ++ 0x8335616aed761f1f, 0x7f44e6bd49e807b8, ++ 0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a6, ++ 0xcd036837130890a1, 0x36dba887c37a8c0f, ++ 0x802221226be55a64, 0xc2494954da2c9789, ++ 0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6c, ++ 0xc83553c5c8965d3d, 0x6f92829494e5acc7, ++ 0xfa42a8b73abbf48c, 0xcb772339ba1f17f9, ++ 0x9c69a97284b578d7, 0xff2a760414536efb, ++ 0xc38413cf25e2d70d, 0xfef5138519684aba, ++ 0xf46518c2ef5b8cd1, 0x7eb258665fc25d69, ++ 0x98bf2f79d5993802, 0xef2f773ffbd97a61, ++ 0xbeeefb584aff8603, 0xaafb550ffacfd8fa, ++ 0xeeaaba2e5dbf6784, 0x95ba2a53f983cf38, ++ 0x952ab45cfa97a0b2, 0xdd945a747bf26183, ++ 0xba756174393d88df, 0x94f971119aeef9e4, ++ 0xe912b9d1478ceb17, 0x7a37cd5601aab85d, ++ 0x91abb422ccb812ee, 0xac62e055c10ab33a, ++ 0xb616a12b7fe617aa, 0x577b986b314d6009, ++ 0xe39c49765fdf9d94, 0xed5a7e85fda0b80b, ++ 0x8e41ade9fbebc27d, 0x14588f13be847307, ++ 0xb1d219647ae6b31c, 0x596eb2d8ae258fc8, ++ 0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bb, ++ 0x8aec23d680043bee, 0x25de7bb9480d5854, ++ 0xada72ccc20054ae9, 0xaf561aa79a10ae6a, ++ 0xd910f7ff28069da4, 0x1b2ba1518094da04, ++ 0x87aa9aff79042286, 0x90fb44d2f05d0842, ++ 0xa99541bf57452b28, 0x353a1607ac744a53, ++ 0xd3fa922f2d1675f2, 0x42889b8997915ce8, ++ 0x847c9b5d7c2e09b7, 0x69956135febada11, ++ 0xa59bc234db398c25, 0x43fab9837e699095, ++ 0xcf02b2c21207ef2e, 0x94f967e45e03f4bb, ++ 0x8161afb94b44f57d, 0x1d1be0eebac278f5, ++ 0xa1ba1ba79e1632dc, 0x6462d92a69731732, ++ 0xca28a291859bbf93, 0x7d7b8f7503cfdcfe, ++ 0xfcb2cb35e702af78, 0x5cda735244c3d43e, ++ 0x9defbf01b061adab, 0x3a0888136afa64a7, ++ 0xc56baec21c7a1916, 0x88aaa1845b8fdd0, ++ 0xf6c69a72a3989f5b, 0x8aad549e57273d45, ++ 0x9a3c2087a63f6399, 0x36ac54e2f678864b, ++ 0xc0cb28a98fcf3c7f, 0x84576a1bb416a7dd, ++ 0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d5, ++ 0x969eb7c47859e743, 0x9f644ae5a4b1b325, ++ 0xbc4665b596706114, 0x873d5d9f0dde1fee, ++ 0xeb57ff22fc0c7959, 0xa90cb506d155a7ea, ++ 0x9316ff75dd87cbd8, 0x9a7f12442d588f2, ++ 0xb7dcbf5354e9bece, 0xc11ed6d538aeb2f, ++ 0xe5d3ef282a242e81, 0x8f1668c8a86da5fa, ++ 0x8fa475791a569d10, 0xf96e017d694487bc, ++ 0xb38d92d760ec4455, 0x37c981dcc395a9ac, ++ 0xe070f78d3927556a, 0x85bbe253f47b1417, ++ 0x8c469ab843b89562, 0x93956d7478ccec8e, ++ 0xaf58416654a6babb, 0x387ac8d1970027b2, ++ 0xdb2e51bfe9d0696a, 0x6997b05fcc0319e, ++ 0x88fcf317f22241e2, 0x441fece3bdf81f03, ++ 0xab3c2fddeeaad25a, 0xd527e81cad7626c3, ++ 0xd60b3bd56a5586f1, 0x8a71e223d8d3b074, ++ 0x85c7056562757456, 0xf6872d5667844e49, ++ 0xa738c6bebb12d16c, 0xb428f8ac016561db, ++ 0xd106f86e69d785c7, 0xe13336d701beba52, ++ 0x82a45b450226b39c, 0xecc0024661173473, ++ 0xa34d721642b06084, 0x27f002d7f95d0190, ++ 0xcc20ce9bd35c78a5, 0x31ec038df7b441f4, ++ 0xff290242c83396ce, 0x7e67047175a15271, ++ 0x9f79a169bd203e41, 0xf0062c6e984d386, ++ 0xc75809c42c684dd1, 0x52c07b78a3e60868, ++ 0xf92e0c3537826145, 0xa7709a56ccdf8a82, ++ 0x9bbcc7a142b17ccb, 0x88a66076400bb691, ++ 0xc2abf989935ddbfe, 0x6acff893d00ea435, ++ 0xf356f7ebf83552fe, 0x583f6b8c4124d43, ++ 0x98165af37b2153de, 0xc3727a337a8b704a, ++ 0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5c, ++ 0xeda2ee1c7064130c, 0x1162def06f79df73, ++ 0x9485d4d1c63e8be7, 0x8addcb5645ac2ba8, ++ 0xb9a74a0637ce2ee1, 0x6d953e2bd7173692, ++ 0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0437, ++ 0x910ab1d4db9914a0, 0x1d9c9892400a22a2, ++ 0xb54d5e4a127f59c8, 0x2503beb6d00cab4b, ++ 0xe2a0b5dc971f303a, 0x2e44ae64840fd61d, ++ 0x8da471a9de737e24, 0x5ceaecfed289e5d2, ++ 0xb10d8e1456105dad, 0x7425a83e872c5f47, ++ 0xdd50f1996b947518, 0xd12f124e28f77719, ++ 0x8a5296ffe33cc92f, 0x82bd6b70d99aaa6f, ++ 0xace73cbfdc0bfb7b, 0x636cc64d1001550b, ++ 0xd8210befd30efa5a, 0x3c47f7e05401aa4e, ++ 0x8714a775e3e95c78, 0x65acfaec34810a71, ++ 0xa8d9d1535ce3b396, 0x7f1839a741a14d0d, ++ 0xd31045a8341ca07c, 0x1ede48111209a050, ++ 0x83ea2b892091e44d, 0x934aed0aab460432, ++ 0xa4e4b66b68b65d60, 0xf81da84d5617853f, ++ 0xce1de40642e3f4b9, 0x36251260ab9d668e, ++ 0x80d2ae83e9ce78f3, 0xc1d72b7c6b426019, ++ 0xa1075a24e4421730, 0xb24cf65b8612f81f, ++ 0xc94930ae1d529cfc, 0xdee033f26797b627, ++ 0xfb9b7cd9a4a7443c, 0x169840ef017da3b1, ++ 0x9d412e0806e88aa5, 0x8e1f289560ee864e, ++ 0xc491798a08a2ad4e, 0xf1a6f2bab92a27e2, ++ 0xf5b5d7ec8acb58a2, 0xae10af696774b1db, ++ 0x9991a6f3d6bf1765, 0xacca6da1e0a8ef29, ++ 0xbff610b0cc6edd3f, 0x17fd090a58d32af3, ++ 0xeff394dcff8a948e, 0xddfc4b4cef07f5b0, ++ 0x95f83d0a1fb69cd9, 0x4abdaf101564f98e, ++ 0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f1, ++ 0xea53df5fd18d5513, 0x84c86189216dc5ed, ++ 0x92746b9be2f8552c, 0x32fd3cf5b4e49bb4, ++ 0xb7118682dbb66a77, 0x3fbc8c33221dc2a1, ++ 0xe4d5e82392a40515, 0xfabaf3feaa5334a, ++ 0x8f05b1163ba6832d, 0x29cb4d87f2a7400e, ++ 0xb2c71d5bca9023f8, 0x743e20e9ef511012, ++ 0xdf78e4b2bd342cf6, 0x914da9246b255416, ++ 0x8bab8eefb6409c1a, 0x1ad089b6c2f7548e, ++ 0xae9672aba3d0c320, 0xa184ac2473b529b1, ++ 0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741e, ++ 0x8865899617fb1871, 0x7e2fa67c7a658892, ++ 0xaa7eebfb9df9de8d, 0xddbb901b98feeab7, ++ 0xd51ea6fa85785631, 0x552a74227f3ea565, ++ 0x8533285c936b35de, 0xd53a88958f87275f, ++ 0xa67ff273b8460356, 0x8a892abaf368f137, ++ 0xd01fef10a657842c, 0x2d2b7569b0432d85, ++ 0x8213f56a67f6b29b, 0x9c3b29620e29fc73, ++ 0xa298f2c501f45f42, 0x8349f3ba91b47b8f, ++ 0xcb3f2f7642717713, 0x241c70a936219a73, ++ 0xfe0efb53d30dd4d7, 0xed238cd383aa0110, ++ 0x9ec95d1463e8a506, 0xf4363804324a40aa, ++ 0xc67bb4597ce2ce48, 0xb143c6053edcd0d5, ++ 0xf81aa16fdc1b81da, 0xdd94b7868e94050a, ++ 0x9b10a4e5e9913128, 0xca7cf2b4191c8326, ++ 0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f0, ++ 0xf24a01a73cf2dccf, 0xbc633b39673c8cec, ++ 0x976e41088617ca01, 0xd5be0503e085d813, ++ 0xbd49d14aa79dbc82, 0x4b2d8644d8a74e18, ++ 0xec9c459d51852ba2, 0xddf8e7d60ed1219e, ++ 0x93e1ab8252f33b45, 0xcabb90e5c942b503, ++ 0xb8da1662e7b00a17, 0x3d6a751f3b936243, ++ 0xe7109bfba19c0c9d, 0xcc512670a783ad4, ++ 0x906a617d450187e2, 0x27fb2b80668b24c5, ++ 0xb484f9dc9641e9da, 0xb1f9f660802dedf6, ++ 0xe1a63853bbd26451, 0x5e7873f8a0396973, ++ 0x8d07e33455637eb2, 0xdb0b487b6423e1e8, ++ 0xb049dc016abc5e5f, 0x91ce1a9a3d2cda62, ++ 0xdc5c5301c56b75f7, 0x7641a140cc7810fb, ++ 0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9d, ++ 0xac2820d9623bf429, 0x546345fa9fbdcd44, ++ 0xd732290fbacaf133, 0xa97c177947ad4095, ++ 0x867f59a9d4bed6c0, 0x49ed8eabcccc485d, ++ 0xa81f301449ee8c70, 0x5c68f256bfff5a74, ++ 0xd226fc195c6a2f8c, 0x73832eec6fff3111, ++ 0x83585d8fd9c25db7, 0xc831fd53c5ff7eab, ++ 0xa42e74f3d032f525, 0xba3e7ca8b77f5e55, ++ 0xcd3a1230c43fb26f, 0x28ce1bd2e55f35eb, ++ 0x80444b5e7aa7cf85, 0x7980d163cf5b81b3, ++ 0xa0555e361951c366, 0xd7e105bcc332621f, ++ 0xc86ab5c39fa63440, 0x8dd9472bf3fefaa7, ++ 0xfa856334878fc150, 0xb14f98f6f0feb951, ++ 0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d3, ++ 0xc3b8358109e84f07, 0xa862f80ec4700c8, ++ 0xf4a642e14c6262c8, 0xcd27bb612758c0fa, ++ 0x98e7e9cccfbd7dbd, 0x8038d51cb897789c, ++ 0xbf21e44003acdd2c, 0xe0470a63e6bd56c3, ++ 0xeeea5d5004981478, 0x1858ccfce06cac74, ++ 0x95527a5202df0ccb, 0xf37801e0c43ebc8, ++ 0xbaa718e68396cffd, 0xd30560258f54e6ba, ++ 0xe950df20247c83fd, 0x47c6b82ef32a2069, ++ 0x91d28b7416cdd27e, 0x4cdc331d57fa5441, ++ 0xb6472e511c81471d, 0xe0133fe4adf8e952, ++ 0xe3d8f9e563a198e5, 0x58180fddd97723a6, ++ 0x8e679c2f5e44ff8f, 0x570f09eaa7ea7648, ++ }; ++}; ++ ++#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE ++ ++template ++constexpr uint64_t ++ powers_template::power_of_five_128[number_of_entries]; ++ ++#endif ++ ++using powers = powers_template<>; ++ ++} // namespace fast_float ++ ++#endif ++ ++#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H ++#define FASTFLOAT_DECIMAL_TO_BINARY_H ++ ++#include ++#include ++#include ++#include ++#include ++#include ++ ++namespace fast_float { ++ ++// This will compute or rather approximate w * 5**q and return a pair of 64-bit ++// words approximating the result, with the "high" part corresponding to the ++// most significant bits and the low part corresponding to the least significant ++// bits. ++// ++template ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128 ++compute_product_approximation(int64_t q, uint64_t w) { ++ const int index = 2 * int(q - powers::smallest_power_of_five); ++ // For small values of q, e.g., q in [0,27], the answer is always exact ++ // because The line value128 firstproduct = full_multiplication(w, ++ // power_of_five_128[index]); gives the exact answer. ++ value128 firstproduct = ++ full_multiplication(w, powers::power_of_five_128[index]); ++ static_assert((bit_precision >= 0) && (bit_precision <= 64), ++ " precision should be in (0,64]"); ++ constexpr uint64_t precision_mask = ++ (bit_precision < 64) ? (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision) ++ : uint64_t(0xFFFFFFFFFFFFFFFF); ++ if ((firstproduct.high & precision_mask) == ++ precision_mask) { // could further guard with (lower + w < lower) ++ // regarding the second product, we only need secondproduct.high, but our ++ // expectation is that the compiler will optimize this extra work away if ++ // needed. ++ value128 secondproduct = ++ full_multiplication(w, powers::power_of_five_128[index + 1]); ++ firstproduct.low += secondproduct.high; ++ if (secondproduct.high > firstproduct.low) { ++ firstproduct.high++; ++ } ++ } ++ return firstproduct; ++} ++ ++namespace detail { ++/** ++ * For q in (0,350), we have that ++ * f = (((152170 + 65536) * q ) >> 16); ++ * is equal to ++ * floor(p) + q ++ * where ++ * p = log(5**q)/log(2) = q * log(5)/log(2) ++ * ++ * For negative values of q in (-400,0), we have that ++ * f = (((152170 + 65536) * q ) >> 16); ++ * is equal to ++ * -ceil(p) + q ++ * where ++ * p = log(5**-q)/log(2) = -q * log(5)/log(2) ++ */ ++constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept { ++ return (((152170 + 65536) * q) >> 16) + 63; ++} ++} // namespace detail ++ ++// create an adjusted mantissa, biased by the invalid power2 ++// for significant digits already multiplied by 10 ** q. ++template ++fastfloat_really_inline FASTFLOAT_CONSTEXPR14 adjusted_mantissa ++compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept { ++ int hilz = int(w >> 63) ^ 1; ++ adjusted_mantissa answer; ++ answer.mantissa = w << hilz; ++ int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent(); ++ answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 + ++ invalid_am_bias); ++ return answer; ++} ++ ++// w * 10 ** q, without rounding the representation up. ++// the power2 in the exponent will be adjusted by invalid_am_bias. ++template ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa ++compute_error(int64_t q, uint64_t w) noexcept { ++ int lz = leading_zeroes(w); ++ w <<= lz; ++ value128 product = ++ compute_product_approximation(q, w); ++ return compute_error_scaled(q, product.high, lz); ++} ++ ++// w * 10 ** q ++// The returned value should be a valid ieee64 number that simply need to be ++// packed. However, in some very rare cases, the computation will fail. In such ++// cases, we return an adjusted_mantissa with a negative power of 2: the caller ++// should recompute in such cases. ++template ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa ++compute_float(int64_t q, uint64_t w) noexcept { ++ adjusted_mantissa answer; ++ if ((w == 0) || (q < binary::smallest_power_of_ten())) { ++ answer.power2 = 0; ++ answer.mantissa = 0; ++ // result should be zero ++ return answer; ++ } ++ if (q > binary::largest_power_of_ten()) { ++ // we want to get infinity: ++ answer.power2 = binary::infinite_power(); ++ answer.mantissa = 0; ++ return answer; ++ } ++ // At this point in time q is in [powers::smallest_power_of_five, ++ // powers::largest_power_of_five]. ++ ++ // We want the most significant bit of i to be 1. Shift if needed. ++ int lz = leading_zeroes(w); ++ w <<= lz; ++ ++ // The required precision is binary::mantissa_explicit_bits() + 3 because ++ // 1. We need the implicit bit ++ // 2. We need an extra bit for rounding purposes ++ // 3. We might lose a bit due to the "upperbit" routine (result too small, ++ // requiring a shift) ++ ++ value128 product = ++ compute_product_approximation(q, w); ++ // The computed 'product' is always sufficient. ++ // Mathematical proof: ++ // Noble Mushtak and Daniel Lemire, Fast Number Parsing Without Fallback (to ++ // appear) See script/mushtak_lemire.py ++ ++ // The "compute_product_approximation" function can be slightly slower than a ++ // branchless approach: value128 product = compute_product(q, w); but in ++ // practice, we can win big with the compute_product_approximation if its ++ // additional branch is easily predicted. Which is best is data specific. ++ int upperbit = int(product.high >> 63); ++ int shift = upperbit + 64 - binary::mantissa_explicit_bits() - 3; ++ ++ answer.mantissa = product.high >> shift; ++ ++ answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz - ++ binary::minimum_exponent()); ++ if (answer.power2 <= 0) { // we have a subnormal? ++ // Here have that answer.power2 <= 0 so -answer.power2 >= 0 ++ if (-answer.power2 + 1 >= ++ 64) { // if we have more than 64 bits below the minimum exponent, you ++ // have a zero for sure. ++ answer.power2 = 0; ++ answer.mantissa = 0; ++ // result should be zero ++ return answer; ++ } ++ // next line is safe because -answer.power2 + 1 < 64 ++ answer.mantissa >>= -answer.power2 + 1; ++ // Thankfully, we can't have both "round-to-even" and subnormals because ++ // "round-to-even" only occurs for powers close to 0. ++ answer.mantissa += (answer.mantissa & 1); // round up ++ answer.mantissa >>= 1; ++ // There is a weird scenario where we don't have a subnormal but just. ++ // Suppose we start with 2.2250738585072013e-308, we end up ++ // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal ++ // whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round ++ // up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer ++ // subnormal, but we can only know this after rounding. ++ // So we only declare a subnormal if we are smaller than the threshold. ++ answer.power2 = ++ (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) ++ ? 0 ++ : 1; ++ return answer; ++ } ++ ++ // usually, we round *up*, but if we fall right in between and and we have an ++ // even basis, we need to round down ++ // We are only concerned with the cases where 5**q fits in single 64-bit word. ++ if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) && ++ (q <= binary::max_exponent_round_to_even()) && ++ ((answer.mantissa & 3) == 1)) { // we may fall between two floats! ++ // To be in-between two floats we need that in doing ++ // answer.mantissa = product.high >> (upperbit + 64 - ++ // binary::mantissa_explicit_bits() - 3); ++ // ... we dropped out only zeroes. But if this happened, then we can go ++ // back!!! ++ if ((answer.mantissa << shift) == product.high) { ++ answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up ++ } ++ } ++ ++ answer.mantissa += (answer.mantissa & 1); // round up ++ answer.mantissa >>= 1; ++ if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) { ++ answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits()); ++ answer.power2++; // undo previous addition ++ } ++ ++ answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits()); ++ if (answer.power2 >= binary::infinite_power()) { // infinity ++ answer.power2 = binary::infinite_power(); ++ answer.mantissa = 0; ++ } ++ return answer; ++} ++ ++} // namespace fast_float ++ ++#endif ++ ++#ifndef FASTFLOAT_BIGINT_H ++#define FASTFLOAT_BIGINT_H ++ ++#include ++#include ++#include ++#include ++ ++ ++namespace fast_float { ++ ++// the limb width: we want efficient multiplication of double the bits in ++// limb, or for 64-bit limbs, at least 64-bit multiplication where we can ++// extract the high and low parts efficiently. this is every 64-bit ++// architecture except for sparc, which emulates 128-bit multiplication. ++// we might have platforms where `CHAR_BIT` is not 8, so let's avoid ++// doing `8 * sizeof(limb)`. ++#if defined(FASTFLOAT_64BIT) && !defined(__sparc) ++#define FASTFLOAT_64BIT_LIMB 1 ++typedef uint64_t limb; ++constexpr size_t limb_bits = 64; ++#else ++#define FASTFLOAT_32BIT_LIMB ++typedef uint32_t limb; ++constexpr size_t limb_bits = 32; ++#endif ++ ++typedef span limb_span; ++ ++// number of bits in a bigint. this needs to be at least the number ++// of bits required to store the largest bigint, which is ++// `log2(10**(digits + max_exp))`, or `log2(10**(767 + 342))`, or ++// ~3600 bits, so we round to 4000. ++constexpr size_t bigint_bits = 4000; ++constexpr size_t bigint_limbs = bigint_bits / limb_bits; ++ ++// vector-like type that is allocated on the stack. the entire ++// buffer is pre-allocated, and only the length changes. ++template struct stackvec { ++ limb data[size]; ++ // we never need more than 150 limbs ++ uint16_t length{0}; ++ ++ stackvec() = default; ++ stackvec(const stackvec &) = delete; ++ stackvec &operator=(const stackvec &) = delete; ++ stackvec(stackvec &&) = delete; ++ stackvec &operator=(stackvec &&other) = delete; ++ ++ // create stack vector from existing limb span. ++ FASTFLOAT_CONSTEXPR20 stackvec(limb_span s) { ++ FASTFLOAT_ASSERT(try_extend(s)); ++ } ++ ++ FASTFLOAT_CONSTEXPR14 limb &operator[](size_t index) noexcept { ++ FASTFLOAT_DEBUG_ASSERT(index < length); ++ return data[index]; ++ } ++ FASTFLOAT_CONSTEXPR14 const limb &operator[](size_t index) const noexcept { ++ FASTFLOAT_DEBUG_ASSERT(index < length); ++ return data[index]; ++ } ++ // index from the end of the container ++ FASTFLOAT_CONSTEXPR14 const limb &rindex(size_t index) const noexcept { ++ FASTFLOAT_DEBUG_ASSERT(index < length); ++ size_t rindex = length - index - 1; ++ return data[rindex]; ++ } ++ ++ // set the length, without bounds checking. ++ FASTFLOAT_CONSTEXPR14 void set_len(size_t len) noexcept { ++ length = uint16_t(len); ++ } ++ constexpr size_t len() const noexcept { return length; } ++ constexpr bool is_empty() const noexcept { return length == 0; } ++ constexpr size_t capacity() const noexcept { return size; } ++ // append item to vector, without bounds checking ++ FASTFLOAT_CONSTEXPR14 void push_unchecked(limb value) noexcept { ++ data[length] = value; ++ length++; ++ } ++ // append item to vector, returning if item was added ++ FASTFLOAT_CONSTEXPR14 bool try_push(limb value) noexcept { ++ if (len() < capacity()) { ++ push_unchecked(value); ++ return true; ++ } else { ++ return false; ++ } ++ } ++ // add items to the vector, from a span, without bounds checking ++ FASTFLOAT_CONSTEXPR20 void extend_unchecked(limb_span s) noexcept { ++ limb *ptr = data + length; ++ std::copy_n(s.ptr, s.len(), ptr); ++ set_len(len() + s.len()); ++ } ++ // try to add items to the vector, returning if items were added ++ FASTFLOAT_CONSTEXPR20 bool try_extend(limb_span s) noexcept { ++ if (len() + s.len() <= capacity()) { ++ extend_unchecked(s); ++ return true; ++ } else { ++ return false; ++ } ++ } ++ // resize the vector, without bounds checking ++ // if the new size is longer than the vector, assign value to each ++ // appended item. ++ FASTFLOAT_CONSTEXPR20 ++ void resize_unchecked(size_t new_len, limb value) noexcept { ++ if (new_len > len()) { ++ size_t count = new_len - len(); ++ limb *first = data + len(); ++ limb *last = first + count; ++ ::std::fill(first, last, value); ++ set_len(new_len); ++ } else { ++ set_len(new_len); ++ } ++ } ++ // try to resize the vector, returning if the vector was resized. ++ FASTFLOAT_CONSTEXPR20 bool try_resize(size_t new_len, limb value) noexcept { ++ if (new_len > capacity()) { ++ return false; ++ } else { ++ resize_unchecked(new_len, value); ++ return true; ++ } ++ } ++ // check if any limbs are non-zero after the given index. ++ // this needs to be done in reverse order, since the index ++ // is relative to the most significant limbs. ++ FASTFLOAT_CONSTEXPR14 bool nonzero(size_t index) const noexcept { ++ while (index < len()) { ++ if (rindex(index) != 0) { ++ return true; ++ } ++ index++; ++ } ++ return false; ++ } ++ // normalize the big integer, so most-significant zero limbs are removed. ++ FASTFLOAT_CONSTEXPR14 void normalize() noexcept { ++ while (len() > 0 && rindex(0) == 0) { ++ length--; ++ } ++ } ++}; ++ ++fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t ++empty_hi64(bool &truncated) noexcept { ++ truncated = false; ++ return 0; ++} ++ ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t ++uint64_hi64(uint64_t r0, bool &truncated) noexcept { ++ truncated = false; ++ int shl = leading_zeroes(r0); ++ return r0 << shl; ++} ++ ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t ++uint64_hi64(uint64_t r0, uint64_t r1, bool &truncated) noexcept { ++ int shl = leading_zeroes(r0); ++ if (shl == 0) { ++ truncated = r1 != 0; ++ return r0; ++ } else { ++ int shr = 64 - shl; ++ truncated = (r1 << shl) != 0; ++ return (r0 << shl) | (r1 >> shr); ++ } ++} ++ ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t ++uint32_hi64(uint32_t r0, bool &truncated) noexcept { ++ return uint64_hi64(r0, truncated); ++} ++ ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t ++uint32_hi64(uint32_t r0, uint32_t r1, bool &truncated) noexcept { ++ uint64_t x0 = r0; ++ uint64_t x1 = r1; ++ return uint64_hi64((x0 << 32) | x1, truncated); ++} ++ ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t ++uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool &truncated) noexcept { ++ uint64_t x0 = r0; ++ uint64_t x1 = r1; ++ uint64_t x2 = r2; ++ return uint64_hi64(x0, (x1 << 32) | x2, truncated); ++} ++ ++// add two small integers, checking for overflow. ++// we want an efficient operation. for msvc, where ++// we don't have built-in intrinsics, this is still ++// pretty fast. ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb ++scalar_add(limb x, limb y, bool &overflow) noexcept { ++ limb z; ++// gcc and clang ++#if defined(__has_builtin) ++#if __has_builtin(__builtin_add_overflow) ++ if (!cpp20_and_in_constexpr()) { ++ overflow = __builtin_add_overflow(x, y, &z); ++ return z; ++ } ++#endif ++#endif ++ ++ // generic, this still optimizes correctly on MSVC. ++ z = x + y; ++ overflow = z < x; ++ return z; ++} ++ ++// multiply two small integers, getting both the high and low bits. ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb ++scalar_mul(limb x, limb y, limb &carry) noexcept { ++#ifdef FASTFLOAT_64BIT_LIMB ++#if defined(__SIZEOF_INT128__) ++ // GCC and clang both define it as an extension. ++ __uint128_t z = __uint128_t(x) * __uint128_t(y) + __uint128_t(carry); ++ carry = limb(z >> limb_bits); ++ return limb(z); ++#else ++ // fallback, no native 128-bit integer multiplication with carry. ++ // on msvc, this optimizes identically, somehow. ++ value128 z = full_multiplication(x, y); ++ bool overflow; ++ z.low = scalar_add(z.low, carry, overflow); ++ z.high += uint64_t(overflow); // cannot overflow ++ carry = z.high; ++ return z.low; ++#endif ++#else ++ uint64_t z = uint64_t(x) * uint64_t(y) + uint64_t(carry); ++ carry = limb(z >> limb_bits); ++ return limb(z); ++#endif ++} ++ ++// add scalar value to bigint starting from offset. ++// used in grade school multiplication ++template ++inline FASTFLOAT_CONSTEXPR20 bool small_add_from(stackvec &vec, limb y, ++ size_t start) noexcept { ++ size_t index = start; ++ limb carry = y; ++ bool overflow; ++ while (carry != 0 && index < vec.len()) { ++ vec[index] = scalar_add(vec[index], carry, overflow); ++ carry = limb(overflow); ++ index += 1; ++ } ++ if (carry != 0) { ++ FASTFLOAT_TRY(vec.try_push(carry)); ++ } ++ return true; ++} ++ ++// add scalar value to bigint. ++template ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool ++small_add(stackvec &vec, limb y) noexcept { ++ return small_add_from(vec, y, 0); ++} ++ ++// multiply bigint by scalar value. ++template ++inline FASTFLOAT_CONSTEXPR20 bool small_mul(stackvec &vec, ++ limb y) noexcept { ++ limb carry = 0; ++ for (size_t index = 0; index < vec.len(); index++) { ++ vec[index] = scalar_mul(vec[index], y, carry); ++ } ++ if (carry != 0) { ++ FASTFLOAT_TRY(vec.try_push(carry)); ++ } ++ return true; ++} ++ ++// add bigint to bigint starting from index. ++// used in grade school multiplication ++template ++FASTFLOAT_CONSTEXPR20 bool large_add_from(stackvec &x, limb_span y, ++ size_t start) noexcept { ++ // the effective x buffer is from `xstart..x.len()`, so exit early ++ // if we can't get that current range. ++ if (x.len() < start || y.len() > x.len() - start) { ++ FASTFLOAT_TRY(x.try_resize(y.len() + start, 0)); ++ } ++ ++ bool carry = false; ++ for (size_t index = 0; index < y.len(); index++) { ++ limb xi = x[index + start]; ++ limb yi = y[index]; ++ bool c1 = false; ++ bool c2 = false; ++ xi = scalar_add(xi, yi, c1); ++ if (carry) { ++ xi = scalar_add(xi, 1, c2); ++ } ++ x[index + start] = xi; ++ carry = c1 | c2; ++ } ++ ++ // handle overflow ++ if (carry) { ++ FASTFLOAT_TRY(small_add_from(x, 1, y.len() + start)); ++ } ++ return true; ++} ++ ++// add bigint to bigint. ++template ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool ++large_add_from(stackvec &x, limb_span y) noexcept { ++ return large_add_from(x, y, 0); ++} ++ ++// grade-school multiplication algorithm ++template ++FASTFLOAT_CONSTEXPR20 bool long_mul(stackvec &x, limb_span y) noexcept { ++ limb_span xs = limb_span(x.data, x.len()); ++ stackvec z(xs); ++ limb_span zs = limb_span(z.data, z.len()); ++ ++ if (y.len() != 0) { ++ limb y0 = y[0]; ++ FASTFLOAT_TRY(small_mul(x, y0)); ++ for (size_t index = 1; index < y.len(); index++) { ++ limb yi = y[index]; ++ stackvec zi; ++ if (yi != 0) { ++ // re-use the same buffer throughout ++ zi.set_len(0); ++ FASTFLOAT_TRY(zi.try_extend(zs)); ++ FASTFLOAT_TRY(small_mul(zi, yi)); ++ limb_span zis = limb_span(zi.data, zi.len()); ++ FASTFLOAT_TRY(large_add_from(x, zis, index)); ++ } ++ } ++ } ++ ++ x.normalize(); ++ return true; ++} ++ ++// grade-school multiplication algorithm ++template ++FASTFLOAT_CONSTEXPR20 bool large_mul(stackvec &x, limb_span y) noexcept { ++ if (y.len() == 1) { ++ FASTFLOAT_TRY(small_mul(x, y[0])); ++ } else { ++ FASTFLOAT_TRY(long_mul(x, y)); ++ } ++ return true; ++} ++ ++template struct pow5_tables { ++ static constexpr uint32_t large_step = 135; ++ static constexpr uint64_t small_power_of_5[] = { ++ 1UL, ++ 5UL, ++ 25UL, ++ 125UL, ++ 625UL, ++ 3125UL, ++ 15625UL, ++ 78125UL, ++ 390625UL, ++ 1953125UL, ++ 9765625UL, ++ 48828125UL, ++ 244140625UL, ++ 1220703125UL, ++ 6103515625UL, ++ 30517578125UL, ++ 152587890625UL, ++ 762939453125UL, ++ 3814697265625UL, ++ 19073486328125UL, ++ 95367431640625UL, ++ 476837158203125UL, ++ 2384185791015625UL, ++ 11920928955078125UL, ++ 59604644775390625UL, ++ 298023223876953125UL, ++ 1490116119384765625UL, ++ 7450580596923828125UL, ++ }; ++#ifdef FASTFLOAT_64BIT_LIMB ++ constexpr static limb large_power_of_5[] = { ++ 1414648277510068013UL, 9180637584431281687UL, 4539964771860779200UL, ++ 10482974169319127550UL, 198276706040285095UL}; ++#else ++ constexpr static limb large_power_of_5[] = { ++ 4279965485U, 329373468U, 4020270615U, 2137533757U, 4287402176U, ++ 1057042919U, 1071430142U, 2440757623U, 381945767U, 46164893U}; ++#endif ++}; ++ ++#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE ++ ++template constexpr uint32_t pow5_tables::large_step; ++ ++template constexpr uint64_t pow5_tables::small_power_of_5[]; ++ ++template constexpr limb pow5_tables::large_power_of_5[]; ++ ++#endif ++ ++// big integer type. implements a small subset of big integer ++// arithmetic, using simple algorithms since asymptotically ++// faster algorithms are slower for a small number of limbs. ++// all operations assume the big-integer is normalized. ++struct bigint : pow5_tables<> { ++ // storage of the limbs, in little-endian order. ++ stackvec vec; ++ ++ FASTFLOAT_CONSTEXPR20 bigint() : vec() {} ++ bigint(const bigint &) = delete; ++ bigint &operator=(const bigint &) = delete; ++ bigint(bigint &&) = delete; ++ bigint &operator=(bigint &&other) = delete; ++ ++ FASTFLOAT_CONSTEXPR20 bigint(uint64_t value) : vec() { ++#ifdef FASTFLOAT_64BIT_LIMB ++ vec.push_unchecked(value); ++#else ++ vec.push_unchecked(uint32_t(value)); ++ vec.push_unchecked(uint32_t(value >> 32)); ++#endif ++ vec.normalize(); ++ } ++ ++ // get the high 64 bits from the vector, and if bits were truncated. ++ // this is to get the significant digits for the float. ++ FASTFLOAT_CONSTEXPR20 uint64_t hi64(bool &truncated) const noexcept { ++#ifdef FASTFLOAT_64BIT_LIMB ++ if (vec.len() == 0) { ++ return empty_hi64(truncated); ++ } else if (vec.len() == 1) { ++ return uint64_hi64(vec.rindex(0), truncated); ++ } else { ++ uint64_t result = uint64_hi64(vec.rindex(0), vec.rindex(1), truncated); ++ truncated |= vec.nonzero(2); ++ return result; ++ } ++#else ++ if (vec.len() == 0) { ++ return empty_hi64(truncated); ++ } else if (vec.len() == 1) { ++ return uint32_hi64(vec.rindex(0), truncated); ++ } else if (vec.len() == 2) { ++ return uint32_hi64(vec.rindex(0), vec.rindex(1), truncated); ++ } else { ++ uint64_t result = ++ uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), truncated); ++ truncated |= vec.nonzero(3); ++ return result; ++ } ++#endif ++ } ++ ++ // compare two big integers, returning the large value. ++ // assumes both are normalized. if the return value is ++ // negative, other is larger, if the return value is ++ // positive, this is larger, otherwise they are equal. ++ // the limbs are stored in little-endian order, so we ++ // must compare the limbs in ever order. ++ FASTFLOAT_CONSTEXPR20 int compare(const bigint &other) const noexcept { ++ if (vec.len() > other.vec.len()) { ++ return 1; ++ } else if (vec.len() < other.vec.len()) { ++ return -1; ++ } else { ++ for (size_t index = vec.len(); index > 0; index--) { ++ limb xi = vec[index - 1]; ++ limb yi = other.vec[index - 1]; ++ if (xi > yi) { ++ return 1; ++ } else if (xi < yi) { ++ return -1; ++ } ++ } ++ return 0; ++ } ++ } ++ ++ // shift left each limb n bits, carrying over to the new limb ++ // returns true if we were able to shift all the digits. ++ FASTFLOAT_CONSTEXPR20 bool shl_bits(size_t n) noexcept { ++ // Internally, for each item, we shift left by n, and add the previous ++ // right shifted limb-bits. ++ // For example, we transform (for u8) shifted left 2, to: ++ // b10100100 b01000010 ++ // b10 b10010001 b00001000 ++ FASTFLOAT_DEBUG_ASSERT(n != 0); ++ FASTFLOAT_DEBUG_ASSERT(n < sizeof(limb) * 8); ++ ++ size_t shl = n; ++ size_t shr = limb_bits - shl; ++ limb prev = 0; ++ for (size_t index = 0; index < vec.len(); index++) { ++ limb xi = vec[index]; ++ vec[index] = (xi << shl) | (prev >> shr); ++ prev = xi; ++ } ++ ++ limb carry = prev >> shr; ++ if (carry != 0) { ++ return vec.try_push(carry); ++ } ++ return true; ++ } ++ ++ // move the limbs left by `n` limbs. ++ FASTFLOAT_CONSTEXPR20 bool shl_limbs(size_t n) noexcept { ++ FASTFLOAT_DEBUG_ASSERT(n != 0); ++ if (n + vec.len() > vec.capacity()) { ++ return false; ++ } else if (!vec.is_empty()) { ++ // move limbs ++ limb *dst = vec.data + n; ++ const limb *src = vec.data; ++ std::copy_backward(src, src + vec.len(), dst + vec.len()); ++ // fill in empty limbs ++ limb *first = vec.data; ++ limb *last = first + n; ++ ::std::fill(first, last, 0); ++ vec.set_len(n + vec.len()); ++ return true; ++ } else { ++ return true; ++ } ++ } ++ ++ // move the limbs left by `n` bits. ++ FASTFLOAT_CONSTEXPR20 bool shl(size_t n) noexcept { ++ size_t rem = n % limb_bits; ++ size_t div = n / limb_bits; ++ if (rem != 0) { ++ FASTFLOAT_TRY(shl_bits(rem)); ++ } ++ if (div != 0) { ++ FASTFLOAT_TRY(shl_limbs(div)); ++ } ++ return true; ++ } ++ ++ // get the number of leading zeros in the bigint. ++ FASTFLOAT_CONSTEXPR20 int ctlz() const noexcept { ++ if (vec.is_empty()) { ++ return 0; ++ } else { ++#ifdef FASTFLOAT_64BIT_LIMB ++ return leading_zeroes(vec.rindex(0)); ++#else ++ // no use defining a specialized leading_zeroes for a 32-bit type. ++ uint64_t r0 = vec.rindex(0); ++ return leading_zeroes(r0 << 32); ++#endif ++ } ++ } ++ ++ // get the number of bits in the bigint. ++ FASTFLOAT_CONSTEXPR20 int bit_length() const noexcept { ++ int lz = ctlz(); ++ return int(limb_bits * vec.len()) - lz; ++ } ++ ++ FASTFLOAT_CONSTEXPR20 bool mul(limb y) noexcept { return small_mul(vec, y); } ++ ++ FASTFLOAT_CONSTEXPR20 bool add(limb y) noexcept { return small_add(vec, y); } ++ ++ // multiply as if by 2 raised to a power. ++ FASTFLOAT_CONSTEXPR20 bool pow2(uint32_t exp) noexcept { return shl(exp); } ++ ++ // multiply as if by 5 raised to a power. ++ FASTFLOAT_CONSTEXPR20 bool pow5(uint32_t exp) noexcept { ++ // multiply by a power of 5 ++ size_t large_length = sizeof(large_power_of_5) / sizeof(limb); ++ limb_span large = limb_span(large_power_of_5, large_length); ++ while (exp >= large_step) { ++ FASTFLOAT_TRY(large_mul(vec, large)); ++ exp -= large_step; ++ } ++#ifdef FASTFLOAT_64BIT_LIMB ++ uint32_t small_step = 27; ++ limb max_native = 7450580596923828125UL; ++#else ++ uint32_t small_step = 13; ++ limb max_native = 1220703125U; ++#endif ++ while (exp >= small_step) { ++ FASTFLOAT_TRY(small_mul(vec, max_native)); ++ exp -= small_step; ++ } ++ if (exp != 0) { ++ // Work around clang bug https://godbolt.org/z/zedh7rrhc ++ // This is similar to https://github.com/llvm/llvm-project/issues/47746, ++ // except the workaround described there don't work here ++ FASTFLOAT_TRY(small_mul( ++ vec, limb(((void)small_power_of_5[0], small_power_of_5[exp])))); ++ } ++ ++ return true; ++ } ++ ++ // multiply as if by 10 raised to a power. ++ FASTFLOAT_CONSTEXPR20 bool pow10(uint32_t exp) noexcept { ++ FASTFLOAT_TRY(pow5(exp)); ++ return pow2(exp); ++ } ++}; ++ ++} // namespace fast_float ++ ++#endif ++ ++#ifndef FASTFLOAT_DIGIT_COMPARISON_H ++#define FASTFLOAT_DIGIT_COMPARISON_H ++ ++#include ++#include ++#include ++#include ++ ++ ++namespace fast_float { ++ ++// 1e0 to 1e19 ++constexpr static uint64_t powers_of_ten_uint64[] = {1UL, ++ 10UL, ++ 100UL, ++ 1000UL, ++ 10000UL, ++ 100000UL, ++ 1000000UL, ++ 10000000UL, ++ 100000000UL, ++ 1000000000UL, ++ 10000000000UL, ++ 100000000000UL, ++ 1000000000000UL, ++ 10000000000000UL, ++ 100000000000000UL, ++ 1000000000000000UL, ++ 10000000000000000UL, ++ 100000000000000000UL, ++ 1000000000000000000UL, ++ 10000000000000000000UL}; ++ ++// calculate the exponent, in scientific notation, of the number. ++// this algorithm is not even close to optimized, but it has no practical ++// effect on performance: in order to have a faster algorithm, we'd need ++// to slow down performance for faster algorithms, and this is still fast. ++template ++fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int32_t ++scientific_exponent(parsed_number_string_t &num) noexcept { ++ uint64_t mantissa = num.mantissa; ++ int32_t exponent = int32_t(num.exponent); ++ while (mantissa >= 10000) { ++ mantissa /= 10000; ++ exponent += 4; ++ } ++ while (mantissa >= 100) { ++ mantissa /= 100; ++ exponent += 2; ++ } ++ while (mantissa >= 10) { ++ mantissa /= 10; ++ exponent += 1; ++ } ++ return exponent; ++} ++ ++// this converts a native floating-point number to an extended-precision float. ++template ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa ++to_extended(T value) noexcept { ++ using equiv_uint = typename binary_format::equiv_uint; ++ constexpr equiv_uint exponent_mask = binary_format::exponent_mask(); ++ constexpr equiv_uint mantissa_mask = binary_format::mantissa_mask(); ++ constexpr equiv_uint hidden_bit_mask = binary_format::hidden_bit_mask(); ++ ++ adjusted_mantissa am; ++ int32_t bias = binary_format::mantissa_explicit_bits() - ++ binary_format::minimum_exponent(); ++ equiv_uint bits; ++#if FASTFLOAT_HAS_BIT_CAST ++ bits = std::bit_cast(value); ++#else ++ ::memcpy(&bits, &value, sizeof(T)); ++#endif ++ if ((bits & exponent_mask) == 0) { ++ // denormal ++ am.power2 = 1 - bias; ++ am.mantissa = bits & mantissa_mask; ++ } else { ++ // normal ++ am.power2 = int32_t((bits & exponent_mask) >> ++ binary_format::mantissa_explicit_bits()); ++ am.power2 -= bias; ++ am.mantissa = (bits & mantissa_mask) | hidden_bit_mask; ++ } ++ ++ return am; ++} ++ ++// get the extended precision value of the halfway point between b and b+u. ++// we are given a native float that represents b, so we need to adjust it ++// halfway between b and b+u. ++template ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa ++to_extended_halfway(T value) noexcept { ++ adjusted_mantissa am = to_extended(value); ++ am.mantissa <<= 1; ++ am.mantissa += 1; ++ am.power2 -= 1; ++ return am; ++} ++ ++// round an extended-precision float to the nearest machine float. ++template ++fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void round(adjusted_mantissa &am, ++ callback cb) noexcept { ++ int32_t mantissa_shift = 64 - binary_format::mantissa_explicit_bits() - 1; ++ if (-am.power2 >= mantissa_shift) { ++ // have a denormal float ++ int32_t shift = -am.power2 + 1; ++ cb(am, std::min(shift, 64)); ++ // check for round-up: if rounding-nearest carried us to the hidden bit. ++ am.power2 = (am.mantissa < ++ (uint64_t(1) << binary_format::mantissa_explicit_bits())) ++ ? 0 ++ : 1; ++ return; ++ } ++ ++ // have a normal float, use the default shift. ++ cb(am, mantissa_shift); ++ ++ // check for carry ++ if (am.mantissa >= ++ (uint64_t(2) << binary_format::mantissa_explicit_bits())) { ++ am.mantissa = (uint64_t(1) << binary_format::mantissa_explicit_bits()); ++ am.power2++; ++ } ++ ++ // check for infinite: we could have carried to an infinite power ++ am.mantissa &= ~(uint64_t(1) << binary_format::mantissa_explicit_bits()); ++ if (am.power2 >= binary_format::infinite_power()) { ++ am.power2 = binary_format::infinite_power(); ++ am.mantissa = 0; ++ } ++} ++ ++template ++fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void ++round_nearest_tie_even(adjusted_mantissa &am, int32_t shift, ++ callback cb) noexcept { ++ const uint64_t mask = (shift == 64) ? UINT64_MAX : (uint64_t(1) << shift) - 1; ++ const uint64_t halfway = (shift == 0) ? 0 : uint64_t(1) << (shift - 1); ++ uint64_t truncated_bits = am.mantissa & mask; ++ bool is_above = truncated_bits > halfway; ++ bool is_halfway = truncated_bits == halfway; ++ ++ // shift digits into position ++ if (shift == 64) { ++ am.mantissa = 0; ++ } else { ++ am.mantissa >>= shift; ++ } ++ am.power2 += shift; ++ ++ bool is_odd = (am.mantissa & 1) == 1; ++ am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above)); ++} ++ ++fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void ++round_down(adjusted_mantissa &am, int32_t shift) noexcept { ++ if (shift == 64) { ++ am.mantissa = 0; ++ } else { ++ am.mantissa >>= shift; ++ } ++ am.power2 += shift; ++} ++template ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void ++skip_zeros(UC const *&first, UC const *last) noexcept { ++ uint64_t val; ++ while (!cpp20_and_in_constexpr() && ++ std::distance(first, last) >= int_cmp_len()) { ++ ::memcpy(&val, first, sizeof(uint64_t)); ++ if (val != int_cmp_zeros()) { ++ break; ++ } ++ first += int_cmp_len(); ++ } ++ while (first != last) { ++ if (*first != UC('0')) { ++ break; ++ } ++ first++; ++ } ++} ++ ++// determine if any non-zero digits were truncated. ++// all characters must be valid digits. ++template ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool ++is_truncated(UC const *first, UC const *last) noexcept { ++ // do 8-bit optimizations, can just compare to 8 literal 0s. ++ uint64_t val; ++ while (!cpp20_and_in_constexpr() && ++ std::distance(first, last) >= int_cmp_len()) { ++ ::memcpy(&val, first, sizeof(uint64_t)); ++ if (val != int_cmp_zeros()) { ++ return true; ++ } ++ first += int_cmp_len(); ++ } ++ while (first != last) { ++ if (*first != UC('0')) { ++ return true; ++ } ++ ++first; ++ } ++ return false; ++} ++template ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool ++is_truncated(span s) noexcept { ++ return is_truncated(s.ptr, s.ptr + s.len()); ++} ++ ++template ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void ++parse_eight_digits(const UC *&p, limb &value, size_t &counter, ++ size_t &count) noexcept { ++ value = value * 100000000 + parse_eight_digits_unrolled(p); ++ p += 8; ++ counter += 8; ++ count += 8; ++} ++ ++template ++fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void ++parse_one_digit(UC const *&p, limb &value, size_t &counter, ++ size_t &count) noexcept { ++ value = value * 10 + limb(*p - UC('0')); ++ p++; ++ counter++; ++ count++; ++} ++ ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void ++add_native(bigint &big, limb power, limb value) noexcept { ++ big.mul(power); ++ big.add(value); ++} ++ ++fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void ++round_up_bigint(bigint &big, size_t &count) noexcept { ++ // need to round-up the digits, but need to avoid rounding ++ // ....9999 to ...10000, which could cause a false halfway point. ++ add_native(big, 10, 1); ++ count++; ++} ++ ++// parse the significant digits into a big integer ++template ++inline FASTFLOAT_CONSTEXPR20 void ++parse_mantissa(bigint &result, parsed_number_string_t &num, ++ size_t max_digits, size_t &digits) noexcept { ++ // try to minimize the number of big integer and scalar multiplication. ++ // therefore, try to parse 8 digits at a time, and multiply by the largest ++ // scalar value (9 or 19 digits) for each step. ++ size_t counter = 0; ++ digits = 0; ++ limb value = 0; ++#ifdef FASTFLOAT_64BIT_LIMB ++ size_t step = 19; ++#else ++ size_t step = 9; ++#endif ++ ++ // process all integer digits. ++ UC const *p = num.integer.ptr; ++ UC const *pend = p + num.integer.len(); ++ skip_zeros(p, pend); ++ // process all digits, in increments of step per loop ++ while (p != pend) { ++ while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && ++ (max_digits - digits >= 8)) { ++ parse_eight_digits(p, value, counter, digits); ++ } ++ while (counter < step && p != pend && digits < max_digits) { ++ parse_one_digit(p, value, counter, digits); ++ } ++ if (digits == max_digits) { ++ // add the temporary value, then check if we've truncated any digits ++ add_native(result, limb(powers_of_ten_uint64[counter]), value); ++ bool truncated = is_truncated(p, pend); ++ if (num.fraction.ptr != nullptr) { ++ truncated |= is_truncated(num.fraction); ++ } ++ if (truncated) { ++ round_up_bigint(result, digits); ++ } ++ return; ++ } else { ++ add_native(result, limb(powers_of_ten_uint64[counter]), value); ++ counter = 0; ++ value = 0; ++ } ++ } ++ ++ // add our fraction digits, if they're available. ++ if (num.fraction.ptr != nullptr) { ++ p = num.fraction.ptr; ++ pend = p + num.fraction.len(); ++ if (digits == 0) { ++ skip_zeros(p, pend); ++ } ++ // process all digits, in increments of step per loop ++ while (p != pend) { ++ while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && ++ (max_digits - digits >= 8)) { ++ parse_eight_digits(p, value, counter, digits); ++ } ++ while (counter < step && p != pend && digits < max_digits) { ++ parse_one_digit(p, value, counter, digits); ++ } ++ if (digits == max_digits) { ++ // add the temporary value, then check if we've truncated any digits ++ add_native(result, limb(powers_of_ten_uint64[counter]), value); ++ bool truncated = is_truncated(p, pend); ++ if (truncated) { ++ round_up_bigint(result, digits); ++ } ++ return; ++ } else { ++ add_native(result, limb(powers_of_ten_uint64[counter]), value); ++ counter = 0; ++ value = 0; ++ } ++ } ++ } ++ ++ if (counter != 0) { ++ add_native(result, limb(powers_of_ten_uint64[counter]), value); ++ } ++} ++ ++template ++inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa ++positive_digit_comp(bigint &bigmant, int32_t exponent) noexcept { ++ FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent))); ++ adjusted_mantissa answer; ++ bool truncated; ++ answer.mantissa = bigmant.hi64(truncated); ++ int bias = binary_format::mantissa_explicit_bits() - ++ binary_format::minimum_exponent(); ++ answer.power2 = bigmant.bit_length() - 64 + bias; ++ ++ round(answer, [truncated](adjusted_mantissa &a, int32_t shift) { ++ round_nearest_tie_even( ++ a, shift, ++ [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool { ++ return is_above || (is_halfway && truncated) || ++ (is_odd && is_halfway); ++ }); ++ }); ++ ++ return answer; ++} ++ ++// the scaling here is quite simple: we have, for the real digits `m * 10^e`, ++// and for the theoretical digits `n * 2^f`. Since `e` is always negative, ++// to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`. ++// we then need to scale by `2^(f- e)`, and then the two significant digits ++// are of the same magnitude. ++template ++inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa negative_digit_comp( ++ bigint &bigmant, adjusted_mantissa am, int32_t exponent) noexcept { ++ bigint &real_digits = bigmant; ++ int32_t real_exp = exponent; ++ ++ // get the value of `b`, rounded down, and get a bigint representation of b+h ++ adjusted_mantissa am_b = am; ++ // gcc7 buf: use a lambda to remove the noexcept qualifier bug with ++ // -Wnoexcept-type. ++ round(am_b, ++ [](adjusted_mantissa &a, int32_t shift) { round_down(a, shift); }); ++ T b; ++ to_float(false, am_b, b); ++ adjusted_mantissa theor = to_extended_halfway(b); ++ bigint theor_digits(theor.mantissa); ++ int32_t theor_exp = theor.power2; ++ ++ // scale real digits and theor digits to be same power. ++ int32_t pow2_exp = theor_exp - real_exp; ++ uint32_t pow5_exp = uint32_t(-real_exp); ++ if (pow5_exp != 0) { ++ FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp)); ++ } ++ if (pow2_exp > 0) { ++ FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp))); ++ } else if (pow2_exp < 0) { ++ FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp))); ++ } ++ ++ // compare digits, and use it to director rounding ++ int ord = real_digits.compare(theor_digits); ++ adjusted_mantissa answer = am; ++ round(answer, [ord](adjusted_mantissa &a, int32_t shift) { ++ round_nearest_tie_even( ++ a, shift, [ord](bool is_odd, bool _, bool __) -> bool { ++ (void)_; // not needed, since we've done our comparison ++ (void)__; // not needed, since we've done our comparison ++ if (ord > 0) { ++ return true; ++ } else if (ord < 0) { ++ return false; ++ } else { ++ return is_odd; ++ } ++ }); ++ }); ++ ++ return answer; ++} ++ ++// parse the significant digits as a big integer to unambiguously round the ++// the significant digits. here, we are trying to determine how to round ++// an extended float representation close to `b+h`, halfway between `b` ++// (the float rounded-down) and `b+u`, the next positive float. this ++// algorithm is always correct, and uses one of two approaches. when ++// the exponent is positive relative to the significant digits (such as ++// 1234), we create a big-integer representation, get the high 64-bits, ++// determine if any lower bits are truncated, and use that to direct ++// rounding. in case of a negative exponent relative to the significant ++// digits (such as 1.2345), we create a theoretical representation of ++// `b` as a big-integer type, scaled to the same binary exponent as ++// the actual digits. we then compare the big integer representations ++// of both, and use that to direct rounding. ++template ++inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa ++digit_comp(parsed_number_string_t &num, adjusted_mantissa am) noexcept { ++ // remove the invalid exponent bias ++ am.power2 -= invalid_am_bias; ++ ++ int32_t sci_exp = scientific_exponent(num); ++ size_t max_digits = binary_format::max_digits(); ++ size_t digits = 0; ++ bigint bigmant; ++ parse_mantissa(bigmant, num, max_digits, digits); ++ // can't underflow, since digits is at most max_digits. ++ int32_t exponent = sci_exp + 1 - int32_t(digits); ++ if (exponent >= 0) { ++ return positive_digit_comp(bigmant, exponent); ++ } else { ++ return negative_digit_comp(bigmant, am, exponent); ++ } ++} ++ ++} // namespace fast_float ++ ++#endif ++ ++#ifndef FASTFLOAT_PARSE_NUMBER_H ++#define FASTFLOAT_PARSE_NUMBER_H ++ ++ ++#include ++#include ++#include ++#include ++namespace fast_float { ++ ++namespace detail { ++/** ++ * Special case +inf, -inf, nan, infinity, -infinity. ++ * The case comparisons could be made much faster given that we know that the ++ * strings a null-free and fixed. ++ **/ ++template ++from_chars_result_t FASTFLOAT_CONSTEXPR14 parse_infnan(UC const *first, ++ UC const *last, ++ T &value) noexcept { ++ from_chars_result_t answer{}; ++ answer.ptr = first; ++ answer.ec = std::errc(); // be optimistic ++ bool minusSign = false; ++ if (*first == ++ UC('-')) { // assume first < last, so dereference without checks; ++ // C++17 20.19.3.(7.1) explicitly forbids '+' here ++ minusSign = true; ++ ++first; ++ } ++#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default ++ if (*first == UC('+')) { ++ ++first; ++ } ++#endif ++ if (last - first >= 3) { ++ if (fastfloat_strncasecmp(first, str_const_nan(), 3)) { ++ answer.ptr = (first += 3); ++ value = minusSign ? -std::numeric_limits::quiet_NaN() ++ : std::numeric_limits::quiet_NaN(); ++ // Check for possible nan(n-char-seq-opt), C++17 20.19.3.7, ++ // C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan). ++ if (first != last && *first == UC('(')) { ++ for (UC const *ptr = first + 1; ptr != last; ++ptr) { ++ if (*ptr == UC(')')) { ++ answer.ptr = ptr + 1; // valid nan(n-char-seq-opt) ++ break; ++ } else if (!((UC('a') <= *ptr && *ptr <= UC('z')) || ++ (UC('A') <= *ptr && *ptr <= UC('Z')) || ++ (UC('0') <= *ptr && *ptr <= UC('9')) || *ptr == UC('_'))) ++ break; // forbidden char, not nan(n-char-seq-opt) ++ } ++ } ++ return answer; ++ } ++ if (fastfloat_strncasecmp(first, str_const_inf(), 3)) { ++ if ((last - first >= 8) && ++ fastfloat_strncasecmp(first + 3, str_const_inf() + 3, 5)) { ++ answer.ptr = first + 8; ++ } else { ++ answer.ptr = first + 3; ++ } ++ value = minusSign ? -std::numeric_limits::infinity() ++ : std::numeric_limits::infinity(); ++ return answer; ++ } ++ } ++ answer.ec = std::errc::invalid_argument; ++ return answer; ++} ++ ++/** ++ * Returns true if the floating-pointing rounding mode is to 'nearest'. ++ * It is the default on most system. This function is meant to be inexpensive. ++ * Credit : @mwalcott3 ++ */ ++fastfloat_really_inline bool rounds_to_nearest() noexcept { ++ // https://lemire.me/blog/2020/06/26/gcc-not-nearest/ ++#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) ++ return false; ++#endif ++ // See ++ // A fast function to check your floating-point rounding mode ++ // https://lemire.me/blog/2022/11/16/a-fast-function-to-check-your-floating-point-rounding-mode/ ++ // ++ // This function is meant to be equivalent to : ++ // prior: #include ++ // return fegetround() == FE_TONEAREST; ++ // However, it is expected to be much faster than the fegetround() ++ // function call. ++ // ++ // The volatile keywoard prevents the compiler from computing the function ++ // at compile-time. ++ // There might be other ways to prevent compile-time optimizations (e.g., ++ // asm). The value does not need to be std::numeric_limits::min(), any ++ // small value so that 1 + x should round to 1 would do (after accounting for ++ // excess precision, as in 387 instructions). ++ static volatile float fmin = std::numeric_limits::min(); ++ float fmini = fmin; // we copy it so that it gets loaded at most once. ++// ++// Explanation: ++// Only when fegetround() == FE_TONEAREST do we have that ++// fmin + 1.0f == 1.0f - fmin. ++// ++// FE_UPWARD: ++// fmin + 1.0f > 1 ++// 1.0f - fmin == 1 ++// ++// FE_DOWNWARD or FE_TOWARDZERO: ++// fmin + 1.0f == 1 ++// 1.0f - fmin < 1 ++// ++// Note: This may fail to be accurate if fast-math has been ++// enabled, as rounding conventions may not apply. ++#ifdef FASTFLOAT_VISUAL_STUDIO ++#pragma warning(push) ++// todo: is there a VS warning? ++// see ++// https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013 ++#elif defined(__clang__) ++#pragma clang diagnostic push ++#pragma clang diagnostic ignored "-Wfloat-equal" ++#elif defined(__GNUC__) ++#pragma GCC diagnostic push ++#pragma GCC diagnostic ignored "-Wfloat-equal" ++#endif ++ return (fmini + 1.0f == 1.0f - fmini); ++#ifdef FASTFLOAT_VISUAL_STUDIO ++#pragma warning(pop) ++#elif defined(__clang__) ++#pragma clang diagnostic pop ++#elif defined(__GNUC__) ++#pragma GCC diagnostic pop ++#endif ++} ++ ++} // namespace detail ++ ++template struct from_chars_caller { ++ template ++ FASTFLOAT_CONSTEXPR20 static from_chars_result_t ++ call(UC const *first, UC const *last, T &value, ++ parse_options_t options) noexcept { ++ return from_chars_advanced(first, last, value, options); ++ } ++}; ++ ++#if __STDCPP_FLOAT32_T__ == 1 ++template <> struct from_chars_caller { ++ template ++ FASTFLOAT_CONSTEXPR20 static from_chars_result_t ++ call(UC const *first, UC const *last, std::float32_t &value, ++ parse_options_t options) noexcept { ++ // if std::float32_t is defined, and we are in C++23 mode; macro set for ++ // float32; set value to float due to equivalence between float and ++ // float32_t ++ float val; ++ auto ret = from_chars_advanced(first, last, val, options); ++ value = val; ++ return ret; ++ } ++}; ++#endif ++ ++#if __STDCPP_FLOAT64_T__ == 1 ++template <> struct from_chars_caller { ++ template ++ FASTFLOAT_CONSTEXPR20 static from_chars_result_t ++ call(UC const *first, UC const *last, std::float64_t &value, ++ parse_options_t options) noexcept { ++ // if std::float64_t is defined, and we are in C++23 mode; macro set for ++ // float64; set value as double due to equivalence between double and ++ // float64_t ++ double val; ++ auto ret = from_chars_advanced(first, last, val, options); ++ value = val; ++ return ret; ++ } ++}; ++#endif ++ ++template ++FASTFLOAT_CONSTEXPR20 from_chars_result_t ++from_chars(UC const *first, UC const *last, T &value, ++ chars_format fmt /*= chars_format::general*/) noexcept { ++ return from_chars_caller::call(first, last, value, ++ parse_options_t(fmt)); ++} ++ ++/** ++ * This function overload takes parsed_number_string_t structure that is created ++ * and populated either by from_chars_advanced function taking chars range and ++ * parsing options or other parsing custom function implemented by user. ++ */ ++template ++FASTFLOAT_CONSTEXPR20 from_chars_result_t ++from_chars_advanced(parsed_number_string_t &pns, T &value) noexcept { ++ ++ static_assert(is_supported_float_type(), ++ "only some floating-point types are supported"); ++ static_assert(is_supported_char_type(), ++ "only char, wchar_t, char16_t and char32_t are supported"); ++ ++ from_chars_result_t answer; ++ ++ answer.ec = std::errc(); // be optimistic ++ answer.ptr = pns.lastmatch; ++ // The implementation of the Clinger's fast path is convoluted because ++ // we want round-to-nearest in all cases, irrespective of the rounding mode ++ // selected on the thread. ++ // We proceed optimistically, assuming that detail::rounds_to_nearest() ++ // returns true. ++ if (binary_format::min_exponent_fast_path() <= pns.exponent && ++ pns.exponent <= binary_format::max_exponent_fast_path() && ++ !pns.too_many_digits) { ++ // Unfortunately, the conventional Clinger's fast path is only possible ++ // when the system rounds to the nearest float. ++ // ++ // We expect the next branch to almost always be selected. ++ // We could check it first (before the previous branch), but ++ // there might be performance advantages at having the check ++ // be last. ++ if (!cpp20_and_in_constexpr() && detail::rounds_to_nearest()) { ++ // We have that fegetround() == FE_TONEAREST. ++ // Next is Clinger's fast path. ++ if (pns.mantissa <= binary_format::max_mantissa_fast_path()) { ++ value = T(pns.mantissa); ++ if (pns.exponent < 0) { ++ value = value / binary_format::exact_power_of_ten(-pns.exponent); ++ } else { ++ value = value * binary_format::exact_power_of_ten(pns.exponent); ++ } ++ if (pns.negative) { ++ value = -value; ++ } ++ return answer; ++ } ++ } else { ++ // We do not have that fegetround() == FE_TONEAREST. ++ // Next is a modified Clinger's fast path, inspired by Jakub Jelínek's ++ // proposal ++ if (pns.exponent >= 0 && ++ pns.mantissa <= ++ binary_format::max_mantissa_fast_path(pns.exponent)) { ++#if defined(__clang__) || defined(FASTFLOAT_32BIT) ++ // Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD ++ if (pns.mantissa == 0) { ++ value = pns.negative ? T(-0.) : T(0.); ++ return answer; ++ } ++#endif ++ value = T(pns.mantissa) * ++ binary_format::exact_power_of_ten(pns.exponent); ++ if (pns.negative) { ++ value = -value; ++ } ++ return answer; ++ } ++ } ++ } ++ adjusted_mantissa am = ++ compute_float>(pns.exponent, pns.mantissa); ++ if (pns.too_many_digits && am.power2 >= 0) { ++ if (am != compute_float>(pns.exponent, pns.mantissa + 1)) { ++ am = compute_error>(pns.exponent, pns.mantissa); ++ } ++ } ++ // If we called compute_float>(pns.exponent, pns.mantissa) ++ // and we have an invalid power (am.power2 < 0), then we need to go the long ++ // way around again. This is very uncommon. ++ if (am.power2 < 0) { ++ am = digit_comp(pns, am); ++ } ++ to_float(pns.negative, am, value); ++ // Test for over/underflow. ++ if ((pns.mantissa != 0 && am.mantissa == 0 && am.power2 == 0) || ++ am.power2 == binary_format::infinite_power()) { ++ answer.ec = std::errc::result_out_of_range; ++ } ++ return answer; ++} ++ ++template ++FASTFLOAT_CONSTEXPR20 from_chars_result_t ++from_chars_advanced(UC const *first, UC const *last, T &value, ++ parse_options_t options) noexcept { ++ ++ static_assert(is_supported_float_type(), ++ "only some floating-point types are supported"); ++ static_assert(is_supported_char_type(), ++ "only char, wchar_t, char16_t and char32_t are supported"); ++ ++ from_chars_result_t answer; ++#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default ++ while ((first != last) && fast_float::is_space(uint8_t(*first))) { ++ first++; ++ } ++#endif ++ if (first == last) { ++ answer.ec = std::errc::invalid_argument; ++ answer.ptr = first; ++ return answer; ++ } ++ parsed_number_string_t pns = ++ parse_number_string(first, last, options); ++ if (!pns.valid) { ++ if (options.format & chars_format::no_infnan) { ++ answer.ec = std::errc::invalid_argument; ++ answer.ptr = first; ++ return answer; ++ } else { ++ return detail::parse_infnan(first, last, value); ++ } ++ } ++ ++ // call overload that takes parsed_number_string_t directly. ++ return from_chars_advanced(pns, value); ++} ++ ++template ++FASTFLOAT_CONSTEXPR20 from_chars_result_t ++from_chars(UC const *first, UC const *last, T &value, int base) noexcept { ++ static_assert(is_supported_char_type(), ++ "only char, wchar_t, char16_t and char32_t are supported"); ++ ++ from_chars_result_t answer; ++#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default ++ while ((first != last) && fast_float::is_space(uint8_t(*first))) { ++ first++; ++ } ++#endif ++ if (first == last || base < 2 || base > 36) { ++ answer.ec = std::errc::invalid_argument; ++ answer.ptr = first; ++ return answer; ++ } ++ return parse_int_string(first, last, value, base); ++} ++ ++} // namespace fast_float ++ ++#endif ++ diff --git a/meta/recipes-support/vte/vte/0005-color-parser-Use-fast_float-implementation-for-from_.patch b/meta/recipes-support/vte/vte/0005-color-parser-Use-fast_float-implementation-for-from_.patch new file mode 100644 index 00000000000..b951bbac189 --- /dev/null +++ b/meta/recipes-support/vte/vte/0005-color-parser-Use-fast_float-implementation-for-from_.patch @@ -0,0 +1,102 @@ +From 08b90d0a5bf8ceb68dd1b4e9ded0f8a2b5287a6e Mon Sep 17 00:00:00 2001 +From: Khem Raj +Date: Fri, 4 Oct 2024 21:22:52 -0700 +Subject: [PATCH 5/5] color-parser: Use fast_float implementation for + from_chars + +Removed dependency on c++ runtime to provide it. + +Fixes: https://gitlab.gnome.org/GNOME/vte/-/issues/2823 + +Upstream-Status: Submitted [https://gitlab.gnome.org/GNOME/vte/-/issues/2823#note_2239888] +Signed-off-by: Khem Raj +--- + src/color-parser.cc | 12 ++++++------ + src/termprops.hh | 12 ++++++------ + 2 files changed, 12 insertions(+), 12 deletions(-) + +diff --git a/src/color-parser.cc b/src/color-parser.cc +index 02ec5d3a..42c51966 100644 +--- a/src/color-parser.cc ++++ b/src/color-parser.cc +@@ -17,7 +17,7 @@ + + #include "color-parser.hh" + #include "color.hh" +- ++#include "fast_float.hh" + #include + #include + #include +@@ -298,7 +298,7 @@ parse_csslike(std::string const& spec) noexcept + auto value = uint64_t{}; + auto const start = spec.c_str() + 1; + auto const end = spec.c_str() + spec.size(); +- auto const rv = std::from_chars(start, end, value, 16); ++ auto const rv = fast_float::from_chars(start, end, value, 16); + if (rv.ec != std::errc{} || rv.ptr != end) + return std::nullopt; + +@@ -424,7 +424,7 @@ parse_x11like(std::string const& spec) noexcept + auto value = uint64_t{}; + auto const start = spec.c_str() + 1; + auto const end = spec.c_str() + spec.size(); +- auto const rv = std::from_chars(start, end, value, 16); ++ auto const rv = fast_float::from_chars(start, end, value, 16); + if (rv.ec != std::errc{} || rv.ptr != end) + return std::nullopt; + +@@ -447,13 +447,13 @@ parse_x11like(std::string const& spec) noexcept + // Note that the length check above makes sure that @r, @g, @b, + // don't exceed @bits. + auto r = UINT64_C(0), b = UINT64_C(0), g = UINT64_C(0); +- auto rv = std::from_chars(start, end, r, 16); ++ auto rv = fast_float::from_chars(start, end, r, 16); + if (rv.ec != std::errc{} || rv.ptr == end || *rv.ptr != '/') + return std::nullopt; +- rv = std::from_chars(rv.ptr + 1, end, g, 16); ++ rv = fast_float::from_chars(rv.ptr + 1, end, g, 16); + if (rv.ec != std::errc{} || rv.ptr == end || *rv.ptr != '/') + return std::nullopt; +- rv = std::from_chars(rv.ptr + 1, end, b, 16); ++ rv = fast_float::from_chars(rv.ptr + 1, end, b, 16); + if (rv.ec != std::errc{} || rv.ptr != end) + return std::nullopt; + +diff --git a/src/termprops.hh b/src/termprops.hh +index 0d3f0f4c..a10fc7d1 100644 +--- a/src/termprops.hh ++++ b/src/termprops.hh +@@ -17,6 +17,7 @@ + + #include + ++#include "fast_float.hh" + #include "fwd.hh" + #include "uuid.hh" + #include "color.hh" +@@ -355,8 +356,8 @@ inline std::optional + parse_termprop_integral(std::string_view const& str) noexcept + { + auto v = T{}; +- if (auto [ptr, err] = std::from_chars(std::begin(str), +- std::end(str), ++ if (auto [ptr, err] = fast_float::from_chars(str.data(), ++ str.data()+str.size(), + v); + err == std::errc() && ptr == std::end(str)) { + if constexpr (std::is_unsigned_v) { +@@ -389,10 +390,9 @@ inline std::optional + parse_termprop_floating(std::string_view const& str) noexcept + { + auto v = T{}; +- if (auto [ptr, err] = std::from_chars(std::begin(str), +- std::end(str), +- v, +- std::chars_format::general); ++ if (auto [ptr, err] = fast_float::from_chars(str.data(), ++ str.data() + str.size(), ++ v); + err == std::errc() && + ptr == std::end(str) && + std::isfinite(v)) { diff --git a/meta/recipes-support/vte/vte_0.76.3.bb b/meta/recipes-support/vte/vte_0.78.0.bb similarity index 84% rename from meta/recipes-support/vte/vte_0.76.3.bb rename to meta/recipes-support/vte/vte_0.78.0.bb index 515ff228fd4..9ada53a634a 100644 --- a/meta/recipes-support/vte/vte_0.76.3.bb +++ b/meta/recipes-support/vte/vte_0.78.0.bb @@ -15,11 +15,16 @@ DEPENDS = "glib-2.0 glib-2.0-native gtk+3 libpcre2 libxml2-native gperf-native i GIR_MESON_OPTION = 'gir' GIDOCGEN_MESON_OPTION = "docs" - inherit gnomebase gi-docgen features_check upstream-version-is-even gobject-introspection systemd vala -SRC_URI += "file://0001-Add-W_EXITCODE-macro-for-non-glibc-systems.patch" -SRC_URI[archive.sha256sum] = "f678e94c056f377fd0021214adff5450cb172e9a08b160911181ddff7b7d5d60" +SRC_URI += "file://0001-Add-W_EXITCODE-macro-for-non-glibc-systems.patch \ + file://0001-tests-Remove-excessive-constrexpr.patch \ + file://0002-lib-Typo-fix.patch \ + file://0003-Add-missing-system-headers.patch \ + file://0004-fast_float-Add-single-header-library-for-from_char-i.patch \ + file://0005-color-parser-Use-fast_float-implementation-for-from_.patch \ +" +SRC_URI[archive.sha256sum] = "07f09c6228a8bb3c1599dd0f5a6ec797b30d3010c3ac91cf21b69d9635dfaf7c" ANY_OF_DISTRO_FEATURES = "${GTK3DISTROFEATURES}"